AL

ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE

ELLING, MATHEMATICAL AND
NUMERICAL STUDY OF A SOLUTAL
PHASE-FIELD MODEL

THESE
PRESENTEE AU DEPARTEMENT DE MATHEMATIQUES
ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE
POUR L’OBTENTION DU GRADE DE DOCTEUR ES SCIENCES

PAR

Daniel KESSLER
Ingénieur physicien diplomé de I'EPFL

composition du jury:

Prof. Jacques Rappaz, directeur de these
Dr. Erik Burman, rapporteur
Prof. Pierluigi Colli, rapporteur
Prof. Alfio Quarteroni, rapporteur
Prof. Jean-Francois Scheid, rapporteur

Lausanne, EPFL
2001






Version abrégée

Nous étudions un modele de champ de phase solutal isotherme thermody-
namiquement consistant décrivant la solidification d’un alliage binaire. Le
systeme est caractérisé par deux variables: le champ de phase et la concen-
tration. Le champ de phase décrit la phase dans laquelle se trouve locale-
ment lalliage (liquide, solide, intermédiaire). I.’évolution de ces variables est
décrite par un systeme parabolique avec conditions de bord de Neumann.
Apres avoir présenté la construction du modele, nous cherchons des limites
asymptotiques formelles lorsque ’épaisseur d’interface liquide-solide devient
petite. Nous obtenons des modeles limites sous la forme de problemes de
Stefan généralisés, prenant en compte les effets de vitesse et courbure locales
de l'interface. Ensuite, nous introduisons un schéma numeérique de type élé-
ments finis en espace et Euler semi-implicite en temps. Nous démontrons la
convergence de ce schéma grace a l'introduction d’un projecteur elliptique
généralisé. Nous utilisons ce schéma pour simuler la croissance dendritique
dans les alliages, et étudions la stabilité des simulations physiques par rap-
port a plusieurs parametres numériques.
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Abstract

We investigate a thermodynamically consistent isothermal solutal phase-field
model describing the solidification of a binary alloy. The system is character-
ized by two variables: phase-field and concentration. The phase-field locally
describes the phase state of the alloy (liquid, solid or intermediate). The
evolution of these variables is described by a parabolic system with Neu-
mann boundary conditions. After presenting the construction of the model,
we investigate formal asymptotic limits when the liquid-solid interface width
becomes small. Limit models are found in the form of generalized Stefan
problems, which account for effects of the local interface curvature and ve-
locity. We then introduce a finite element in space, semi-implicit Euler in
time numerical scheme. The convergence of this scheme is proved thanks to
the introduction of a generalized elliptic projector. We use this scheme to
simulate dendritic growth in alloys, and investigate the stability of physical
simulations with respect to various numerical parameters.
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Introduction

One of the main topics of modern physics, both theoretical and applied,
is the study of phase transition problems, ranging from the description of
solidification of metals to the study of magnetic properties of solid mate-
rials and percolation. Theoretical physicists are generally more interested
in a microscopic description of the phenomena, usually based on stochastic
theories (Ising’s model, ... ), whereas applied physicists (for example ma-
terials scientists) are usually more interested in macroscopic, deterministic
models, such as the Stefan problem and other explicit descriptions of inter-
face motion. Good reviews have been written on the topic. In particular,
for the more specific case of solidification one may refer to Boettinger et al.
[BCG*00], whereas general reviews of mathematical models related to phase
transition problems can be found in [Ell97] and in [Vis98]. Many of these
models have been the topic of various mathematical investigations (see for

instance [Cag86, CLS99, CNS00, DD95, DHL98, RS00]).

Asides from the more traditional microscopic (stochastic) and macro-
scopic (explicit interface) viewpoints, a third approach, called mesoscopic,
has been developed to describe phase transitions. There are several reasons
to adopt it. Mathematically, the direct macroscopic approach of explicit
sharp interfaces can pose serious problems related to possible changes of
topology and complex geometries, especially for numerical implementations
of front tracking algorithms. Physically, a mesoscopic approach may allow
a combined description of the phase transition phenomena at two scales si-
multaneously - at a large scale in the “pure phases”, and at a smaller scale
in a “diffuse interface”. There are also several ways to implement a meso-
scopic approach. Using a purely mathematical approach, one may artificially
create an intermediate problem with an extra variable, which has a level set
that describes the sharp interface of a macroscopic model (for the level set
method, see [Set96]). This is essentially a mathematical trick, not satisfac-
tory in that it provides only the practical mathematical benefits, not the
theoretical physical interest, of a mesoscopic approach. To get both benefits,
at the cost of more complex modelling, phase-field models have been intro-
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duced, which can be totally coherent with thermodynamics and account for
small-scale phenomena in a physically interpretable way.

In this work, we investigate a phase-field model describing the solidifica-
tion of a binary alloy. We consider the case in which concentration effects
dominate (which experimentally happens for instance in the case of Ni-Cu),
and where thermal fluctuation effects can be neglected. Therefore, it is nat-
ural to consider an isothermal model. From the theory of thermodynamics,
we know that the adequate potential for describing an isothermal situation
is the free energy. Our model will consist in evolution equations for the local
concentration ¢ of the alloy, and the local phase field ¢, such that the total
free energy of the domain decreases with time and that matter is conserved:

9¢
a7 = M (Ao + Fle,0)), (1a)
% = div (D1(¢)Ve + Day(c, ) V), (1b)

where M is a positive constant, F', D; and D, are Lipschitz bounded func-
tions, and D is positive.

As the domain is considered to be physically closed to the exchange of
matter and non-thermal free energy, the evolution equations will be naturally
coupled with homogeneous Neumann boundary conditions. To completely
specify the model, a free energy density has to be built and the evolution
equations need to be adjusted to known physical limit models. For these
two purposes, we follow closely the work of Warren and Boettinger [WB95],
although they considered a model based on the entropy potential, in view
of later accounting for thermal fluctuation effects. This choice is justified
because they have striven to build a thermodynamically consistent model,
at the expense of evolution equations more complex than their predecessor’s.
The details of the model construction can be found in chapter 1 and Appendix
A. The resulting model can be formulated as the parabolic system (1) with
lipschitzian non-linearities. More synthetically one may write an evolution
equation for the vectorial variable @ = (¢, (c)! as

= = div (D(@)Vi) + F (i), (2)

where D and F are Lipschitz bounded functions, and ( a positive constant
chosen such that after the change of variables matrix D is positive definite
uniformly in .
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The model actually exists in two variants, a simpler isotropic model,
presented above, and a more complex anisotropic model accounting for priv-
ileged directions in crystal growth. The well-posedness of the isotropic model

has been investigated by J. F. Scheid and J. Rappaz [RS00].

For any physically relevant phase-field model, a natural question imme-
diatly arises: Is it possible to recover a proper macroscopic sharp-interface
model from this mesoscopic diffuse-interface model? This question has been
investigated in great detail by Caginalp for thermal pure element phase-field
models [Cag86, Cag89]. It has also been addressed in the case of a simple
solutal model by Wheeler et al [WBM92]. Nevertheless, to our knowledge it
has not been investigated in detail before for a thermodynamically consistent
solutal model. We consider this problem for the isotropic model in chapter
2, which has been published in [Kes01]. The method used is a formal asymp-
totic analysis of the model, and it is based on the techniques originally used
by Caginalp. Four different limit models are found, corresponding to differ-
ent ways of going to the sharp-interface limit. They differ by the dependence
on local interface normal velocity and curvature of the resulting generalized
Stefan problems:

Jde

o = Dilse. i, (3a)
g—tc = D,Ac, in Q. (3b)
—v, [ = {DS—EI, on T, (3¢)
2] -, - i
{ - g—ﬂls = A(v,,5), on T, (3e)

where ; and ), are liquid and solid subdomains, I' the interface between
them, f the local free energy density, D; and Dy positive constants, v, the
local normal velocity and x the local interface curvature. The notation [.];
means the jump of a quantity between the solid and liquid sides of the inter-
face, and A is an affine function which characterizes the different limits.

For the purpose of numerical simulations, O. Kruger originally intro-
duced a finite-element in space, semi-implicit Euler in time numerical scheme
[Krii99]. We investigate the convergence of this scheme for the isotropic
model in chapter 3, which is the result of a joint work with J. F. Scheid,
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presently submitted for publication. We introduce an elliptic projector in
the finite element space, which is a generalization of V. Thomée’s projec-
tor [Tho91] to a vectorial time-dependent problem with Neumann boundary
conditions. A convergence result is obtained by combining this tool with
problem-specific a priori error estimates and Gronwall’s lemma. We find
that if the solution @ of the continuous problem (2) is sufficiently regular,
then there exists a constant ' independent of h and 7 such that

—/n —n 2
s 107) = ey < OO +7), (1)
where @}, n = 0,..., N are the approximate solutions at discrete times
to,...,t", h the finite element mesh size and 7 the time step of the numerical

scheme.

We believe that the generalized vectorial elliptic projector we introduced
might be useful in the study of convergence of a similar numerical scheme
applied to other parabolic systems.

We have implemented the aforementioned numerical scheme as a C++
program, based on M. Picasso’s finite element code library and the USA
National Institute of Standards (NIST) implementation of the GMRES algo-
rithm for solving linear systems. Numerical results are presented in chapter
4. The theoretical order of convergence is verified for the isotropic model,
and several stability questions are investigated for the anisotropic model. Fi-
nally, the physical validity of simulation results with the anisotropic model
has been partially addressed with the example of a Ni-Cu alloy. The fol-
lowing figures show the phase-field and concentration in a simulation in the
square adimensional domain [—4,4] x [—4,4]. The computation was actually
made in one quarter of that domain, with a two-percent anisotropy, after an
adimensional time ¢t = (.3.
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Chapter 1

Model

1.1 Physical model

In this section we present the main steps of the construction of a solutal
isothermal phase-field model. Some details have been omitted for the sake
of readability, but can be found in appendix A. Both this section and the
appendix are based on material originally presented in [KKS98], which aims
to introduce a thermodynamically consistent model based on the works of
Wheeler, Boeettinger and McFadden [WBM92] and Warren and Boettinger
[WBO95].

1.1.1 Description of the physical system

We consider a mixture of two pure elements A and B, present both in liquid
and solid states inside a space domain € whose border we call 92. We
consider the evolution of this system from an initial time 0 to a final time
5. From now on, we will always denote by z space coordinates in £} and by
t time coordinates in [0,%s]. The physical system can be characterized by a
relative concentration ¢ : (z,t) € Qx[0,t7] — ¢(x,t) € IR of element B with
respect to the mixture. The relative concentration of element A will then be
1 — ¢, and the variable ¢ will take physical values in the interval [0,1]. We
further characterize the system with an order parameter for solidification,
the phase field ¢ = ¢(x,1), which also takes values in the interval [0, 1]. A
value of ¢ = 0 corresponds to a pure solid region, and a value of ¢ =1 to a
pure liquid region. Since we do not want to account for thermal effects, we
assume temperature 7'(¢) to be homogenous in space, and we consider it as
an external parameter. Note that all quantities in this section are considered
with their proper physical dimension (e.g. t in seconds), whereas after section
1.2 and throughout the document, the same notations will be used to denote
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the corresponding adimensionalized quantities. Also, let us point out that
all functions introduced in the physical model make sense only for values of
¢ and ¢ in [0,1]. Continuation outside of the physical interval is the matter
of mathematical modelling, examined in section 1.3.

To have a thermodynamical description of the evolution of variables ¢
and ¢, we introduce a Ginzburg-Landau free energy functional (see [CH58,

PF90, WSW+93])

Fte.) = [ |10.0.0)+ 1967, (L)

where f is a free energy density and ¢ a small parameter (which is linked, as
we shall see, to the solid-liquid interface thickness).

The second principle of thermodynamics tells us that the degrees of free-
dom of the system will evolve in a way that decreases the free energy of the
system. We are considering temperature T'(t) as an externally imposed pa-
rameter. Therefore, we want the time evolution of both ¢ and ¢ to be such
that the time derivative at fixed T of F(T ¢, ¢) be negative. We define this
time derivative at fixed T' as

:/ (a_f%+a_f%+ 299 w) de.  (1.2)
T=cst Q

d
a T (Thed) dc ot T 96 ot ot

dt

Furthermore, local conservation of matter implies that the evolution of ¢
must be writeable in a divergence form, i.e. there is a flux of matter J.(7', ¢, ¢)
such that

Jc ) , .
P —div (J(T, ¢, 9)). (1.3)

We may now integrate by parts the right-hand side of (1.2), thus naturally
separating terms describing free energy production inside the domain from
those describing free energy transport through the domain’s boundary:

o (2 .
T=cst /Q <J V * <a¢ A¢) ) !

20 af

where n is the unit vector normal to the boundary 0f).

d
E]:(T ¢, Cb)

To fulfill the second principle of thermodynamics, the evolution of both ¢
and ¢ inside the domain should tend to locally decrease the free energy. We
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therefore ask that each term of the integrand in the first integral of (1.4) be
non-positive:

Je - Vaf in €, (1.5a)
de

af 9% _ .
<a¢ Agb) <0, in Q. (1.5b)

Conservation of matter (1.3) and decrease of free energy inside the domain
(1.5b) can be fulfilled by evolution equations which are reasonably simple, yet
flexible enough to allow for fitting of the resulting model to specific situations:
Let n(T,c,¢) and u(T,c,¢) be positive functions. We choose

or
c bl

JAT,e,6) = —p(T,c, )V (L6)

and we describe the evolution of quantities ¢ and ¢ in the domain € for
positive times by the following set of equations:

9 _

y n (52A¢ — f¢) , in 0, (1.7a)
% =div(p (feeVe+ fesV)), in 0, (1.7b)
where f, = g_q];’ e = gé, feo = £2§¢ and f, n and u depend on T', ¢ and ¢.

Finally, in an isothermal system closed to exchange of matter, neither
concentration flux, nor non-thermal free energy flux should cross the domain
boundary. We interpret the latter requirement by asking that the integrand
of the righternmost term in (1.4) be equal to zero throughout the boundary.
Therefore, the two aforementioned conditions can be written as:

< ngqb— a—fJ> ‘n=0, on 0, (1.8a)

J.-n=0, on 09, (1.8b)

These boundary conditions can be simplified to
dp  Je
on  On

The general form (1.7) of isothermal solutal phase-field evolution equa-

tions is used both by Wheeler, Boettinger and McFadden [WBM92] and

=0, on J9. (1.9)
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Warren and Boettinger [WB95]. To completely determine the evolution
equations (1.7), a free energy density f(7,¢,¢) has to be constructed and
functions n(7T, ¢, ¢) and p(T, ¢, ¢) must be determined by fitting to known
limit situations.

1.1.2 Free energy density

The free energy density f(7', ¢, ¢) for a solutal phase-field model is given by a
convex combination of the pure element free energies f4(T, ¢) and fB(T, ¢),
plus a mixture term (see [BK97]):

f(Toe,¢) = (1= ) fAT, é) + cf(T, ) + E—T((l —¢)In(l —¢) + cln(c)),

" (1.10)

where R is Boltzman’s constant and v,, the molar volume.

The specification of a particular form of pure element free energies is the
most important step in defining a particular solutal phase-field model. We
chose to work using variants of Warren and Boettinger’s thermodynamically
consistent free energy density [WB95]. We justify this choice in appendix A,
given by

TS —T T
F(T, ) = LgTP(QD)JngT—gg(@JrfS(T,O), (1.11)
where ¢ stands for either A or B.
The function g(¢) is a standard double-well potential

9(6) = ¢*(1 - ¢)*. (1.12)

The constants L¢ and T¢ are respectively the latent heat and melting tem-
perature for pure element ¢, while W¢ is a model parameter for the potential
barrier height at melting temperature (which we shall see is linked to both
interface thickness and surface tension).

Function p(¢) is introduced in [WB95] as a regularization of the solid-
liquid discontinuity. Whereas Warren and Boettinger specify a choice of p as a
fifth-degree polynomial, in appendix A we investigate possible generalizations
of this choice. To get the simplest possible model, p must follow at least these
constraints:

p(0) =0, (1.13a)
p(1) =1, (1.13b)
p'(¢) >0, Voelo,1], (1.13c)
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but in order to get a completely thermodynamically consistent model, we
require also the following extra constraints on the function p (see appendix

A):

p'(0) =p'(1) =0, (1.14a)
p"(0) = p"(1) = 0. (1.14b)

Warren and Boettinger [WB95] have chosen the polynomial of smallest
degree satisfying both constraints 1.13 and 1.14, which is

p(¢) = 64" — 15¢" + 10¢°. (1.15)

For numerical simulations in chapter 4, we have chosen to use exactly
Warren and Boettinger’s nonlinear functions. However, on the more theoret-
ical chapters 2 and 3, results are valid for a more general family of models.
For instance, we will only need the constraints, and not a specific choice of
p, in order to derive asymptotic limits of the model in chapter 2. Actually,
we are also interested in knowing whether the extra constraints (1.14) that
ensure thermodynamic consistency are necessary for the model to have mean-
ingful sharp-interface limits or if constraints (1.13) are sufficient, therefore
allowing for a simpler choice of p. We are motivated in this by Kim et al.
[KPGDY8|, who have numerical reasons to believe that (another class of)
phase-field models yield the same asymptotic limits whether they are ther-
modynamically consistent or not. As for the numerical scheme convergence
in chapter 3, the proof relies on assumptions made on the nonlinearities of
the problem, which hold true for any sufficiently regular choice of p verifying
constraints (1.13) and some extra mathematical assumptions outside of the
physical domain for the variables. The convergence result even remains valid
for a more general class of problems.

1.1.3 Fitting of model parameters
Pure element phase equation

The stationary one-dimensional pure element (¢ = 0) equation for the phase-
field at melting temperature 7' = T2 is
0%
2 A
It has an infinite number of explicit solutions ¢ : IR — IR for limit
conditions ¢(—o0) = 1, ¢(+00) = 0, obtained by translations of coordinate
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Figure 1.1: one-dimensional pure element stationary solution

x. A particular function ¢, can be chosen by fixing ¢,,(0) = % It is explicitly
given by

—_

Om(r) = ———, (1.17)
l4+e = °

and its graph is represented in figure 1.1.
The quantity

§=ce/V2WA (1.18)

can be easily interpreted as the interface thickness, and should be given
numerical values of the order of atomic distances (see [WBM92]), such as
§=5.10"% em.

Moreover, we can compute the total free energy (1.1) for the specific
solution ¢ = 0, ¢ = ¢,,. If we give the one-dimensional solution the inter-
pretation of a planar three-dimensional solution, then the total free energy
of the one-dimensional solution can be given the interpretation of a surface
energy

eV2WA
6 M)

where F is given by equation (1.1). Such surface tensions for stationary

ot = F(T2,0,¢,) = (1.19)

planar solutions at melting temperature are experimentally known and can
be used to fit the model.
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For a pure metal A, we can therefore link model parameters W+ and ¢ to
physically known quantities using equations (1.18) and (1.19), resulting in

A
WA = 3% and ¢? = 6040 when ¢ = 0. (1.20)
Analogous parameter adjustments also hold for pure element B when ¢ = 1.

For the alloy, we will keep the adjusted values for the potential barrier
heights

A B
WA=3% and WB=3U

- (1.21)

We want however to keep 2 a constant, so we arbitrarily define it as the
average of the pure element values:

e? = 3(a + oP)s. (1.22)

This approximation is reasonable under the assumption that ¢ remains boun-
ded on a small interval. Note that we make a similar assumption for the molar
volume v,y,.

Pure phase concentration equation

We want to ensure that the evolution equation for ¢ on a pure solid (¢ = 0)
or a pure liquid (¢ = 1) is a classical diffusion equation of the form

dc ) L o
g D,Ac, if ¢=0, (1.23a)
% — D/Ac, if =1, (1.23b)

where D and D, are the solid and liquid diffusion coefficients (assumed to
be independent of ¢).

Generalizing these particular cases, we want the equation for ¢ on a ho-
mogeneous phase (i.e. on regions where V¢ = 0) to be of the form

dc _
o = Did)Ac, (1.24)

where

Di(¢) = Dy + q(¢)(Di — D) (1.25)
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is a variable diffusion coefficient, such that ¢ is a monotonous increasing
function of ¢ € [0,1] with values ¢(0) = 0 and ¢(1) = 1. For instance,
Warren and Boettinger choose ¢(¢) = p(¢), since these two functions play
analogous roles in the regularization of the solid-liquid transition. Again, the
particular choices for p and ¢ won’t play any role either in the asymptotic
limits (chapter 2), which depend only on some of the physical properties that
were imposed on these functions during the construction of the model, or in
the convergence result (chapter 3), which relies on more general mathematical
assumptions. We do however also use Warren and Boettinger’s specific choice
of function ¢ for the numerical simulations in chapter 4.
Equation (1.24) determines the positive model function g in (1.7) as

Di(¢)
fee T, e, )

We will also assume that the phase-field diffusion coefficient defined by

w(Tc,¢) = (1.26)

M = ne? (1.27)

is a positive constant, where 7 is one of the positive model functions in (1.7)
and ¢ the Ginzburg-Landau coefficient in (1.1).

1.1.4 Anisotropy

The model we have introduced is isotropic: there is no privileged direction for
solidification. The more theoretical chapters 2 and 3 will deal with this simple
isotropic model. However, real alloys grow anisotropically, and we want to
take this in into consideration for numerical simulations in chapter 4. This
anisotropy is due to crystallographic properties of the solid phase of an alloy:
whereas the liquid is disordered in the microscopic scale, the solid will appear
as an ordered lattice of atoms. In two dimensions, it will thus typically have
four or six privileged directions of growth.

To account for this anisotropy effect, we change the behaviour of the
phase-field equation according to phenomenological laws, as did Warren and
Boettinger [WB95]. First we introduce an angle ¢ € [0,27[ depending on
the local gradient of ¢, such that

_ cos((V)) .
Vo = |Vl <sin(¢(v¢))> : (1.28)

This is the angle between the direction normal to the solidification front and
an arbitrary axis. If V¢ = 0, then we may arbitrarily fix » = 0.
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Anisotropy is introduced in the model through an anisotropy factor a(v),
taking values near 1, maximal when @ indicates a privileged solidification
direction. The anisotropy factor is introduced in the Ginzburg-Landau free
energy (1.1), which is modified as follows:

2

SIVeP — S ((Ve) Vel (1.29)

This induces the following modification in the integrand of the right-hand
side of (1.2):

¢ 9 [ , .
c va—f Vo o <%a ((Ve))| Ve > . (1.30)

We can write the previous quantity more explicitly as

o (Getumeniver)

_ 52a2('¢(v¢))V% Vo + 2 (¥(V6))a( (V)

(V)
ot

IVo|*. (1.31)

We now need to find an explicit expression for the time derivative of
(V). Differentiating (1.28) with respect to ¢ we find that

do 9|V <cos(¢(v¢))> Vet <cos(¢(v¢))> (V) (132)

ot ot \sin(¥(Ve)) sin(p(Ve)) ) ot 7
where J is the rotation matrix
0 1 o
J:<_1 0), (1.33)

which verifies JTJ = Id, J* = —Id and @7 Ji& = 0,V@ € IR?.
If we take the scalar product of (1.32) and JV¢/|Ve|, we find, using
definition (1.28), that

O6(Ve) _ 1 09

o “ Vot IV . (1.34)

Using (1.34) we can further explicit (1.31) as

9,

at

(Z—QGQ('WW))IWI?) = €2V% -0(Ve)Vo, (1.35)
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where

L @WVe)  —d((Ve)a(b(Ve) |
®<W>‘<aw<v¢>>aw<w>> 22()(V$)) ) (1.36)

We now consider the modification (1.30) in the time derivative of the total
free energy, together with equality (1.35). Replacing this in the derivation of
the model (equations (1.2)-(1.8)), we find that when anisotropy is introduced
into the free energy, equation (1.7a) describing the evolution of ¢ should be
replaced by

9

p =1 (2div(O(Ve)Ve) — fs), in 9, (1.37)

and boundary condition (1.8a) for ¢ by

0o . - Of
277 —_ . = .
<€ 5 O(Ve)Ve e Jc> n=0, on 09, (1.38)

while equations (1.7b) and (1.8b) are kept in their original form.
Finally, we have to define an anisotropy function a(v). We choose as

Warren and Boettinger [WB95]:

a(y) =1+ acos(ky), (1.39)

where £ is the order of anisotropy (usually 4 or 6) and a € [0, 1] its amplitude.
Note that the natural limit conditions associated with the anisotropic
evolution equations are more complex than simple homogeneous Neumann
conditions. Nevertheless, they are still the physically relevant conditions, as
they guarantee conservation of matter in the physical domain, and forbid
transfer of free energy through the phase, allowing only free energy transfer
through the thermal flux that intrinsically keeps the system isothermal.

1.2 Adimensional model

Combining all the steps of the model construction, we obtain evolution equa-
tions for ¢ and ¢, which can be adimensionalized by changing space coordi-

nates to & = 7, where [ is a characteristic length of the domain 2, and time
coordinates to t = %, where ll)i is the characteristic liquid diffusion time

associated with the characteristic length [. Furthermore, we won’t explicitly
write the temperature T" anymore, since it plays the role of a parameter. The
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evolution equations then become, in the isotropic case, for qg(iz,f) = ¢(x,1)
and &(7,1) = c(z, 1),

Z_Z:D _ W (&; _ % (. {5)) , (1.40a)
&~ v [p(e.9) (Fele 9)Te + Fe. 91V9)] (1.40b)
where M = DMﬂ 5= %,
N(Cv ¢) = gf(ca Qb) (1 41)
= “y(9) + Belplo) + (1=l = +elnd +fole)
and
(0,6) = posgi(e: ) = 7ell =) D). (1.42)

On the definition of i we used the variable adimensional concentration
diffusivity defined by

Di(¢) = D, + ¢() (Dl . Ds) , (1.43)

where Dl =1 and DS = g—;.

On the definition of f we used the notation fo(c) to describe an affine
function, which is actually irrelevant since f appears in the evolution equa-
tions only through derivatives on ¢ and second derivatives on c.

The constant v used for defining both f and [ 1s linked to physical pa-
rameters by

o U ot + oB

=3-= 1.44
RT [ ( )

v

Finally, the auxiliary functions a and 3 used in (1.41) are defined by

alec) = (1 - c)ozA + ca® (1.45a)
Ble) = (1 —¢)p* + cp? (1.45b)
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where
¢ T
e O
=03 g _TT% (1.46a)
[ L T¢ —T
6= ¢ _om 1.46b
b 3cA4+ 0B T8 7 ( )
for ¢ = Aor B.

We will omit the tildes from now on in all quantities throughout the rest
of this document. We will be always implicitly considering the adimensional
quantities, except where explicitly stated otherwise. Note that the phase-
field diffusion coefficient M is the only model parameter yet to be linked to
physical quantities. This will be done in chapter 2 through asymptotic limits
of the model.

1.3 Mathematical formulation

1.3.1 Mathematical problem

Expanding evolution equations (1.40) (without the tildes) and combining
them with physical boundary conditions (1.9) and initial conditions, we can
write the mathematical problem corresponding to the physical model derived
in section 1.1 as:

Find ¢,c¢: Q x [0,¢;] — IR such that:

1 d¢ - . :
e N = Fle, @), in Qx(0,t5), (l.47a)
% —div (D1(¢)VC + D2(cv ¢)V¢) =0, in €% (Oatf)7 (147b)
% _ g_; ~0 on 99 x (0,1, (1.47c)
#(0) = ¢ in Q, (1.47d)
c(0) = ¢ in 0, (1.47e)
where
, 1 | "
Fle,¢) = —ale)d (6) — +B(0 (), (1.43)

Difer) =relt — Ds(o) (S0 +8@) (149
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Fie ki

Figure 1.2: Non-linear source term for phase-field equation

and o and (3’ are the constant derivatives of the affine functions a(c) and
5(c).

Note that all these quantities make sense from the physical point of view
only when ¢ and ¢ are both in the interval [0, 1]. In this physical domain, we
take the physical definitions for nonlinear functions F', Dy and D,. However,
for ¢ outside of [0, 1] and ¢ fixed or ¢ outside of [0, 1] and ¢ fixed, we extend
all these functions continuously to constant values. For illustration we show
the resulting function F(c, ¢) in figure 1.2. J. F. Scheid and J. Rappaz have
proved that using these extensions, problem (1.47) has a unique solution in
L*(0,ts; H*(Q)) with time derivative in L*(0,¢;; L*(£)) when the initial con-
dition is in H*(2). Furthermore, they proved a maximum principle: under
the same assumptions, the solution stays in the physical domain throughout
the evolution if the initial condition was in the physical domain.

1.3.2 Vectorial formulation

We transform problem (1.47) to a vectorial form by defining the vectorial

g:(i), (1.50)

variable
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where ( is an arbitrary positive parameter that will be fixed later. Then
problem (1.47) reads as a vectorial problem of the form:

Find @ : (z,t) € Q x [0,t5] — w(x,t) = (ui(x,t),us(x,t)) € R? such
that

ou

o7 = div(D(@)Vi) + F(@) in Qx(0,t5), (1.51a)
i

= 0 on 09 x (0,15), (1.51b)
u(0) = in 0, (L.51c)

where the 2 x 2 triangular matrix D is given by

b M 0

) = 1.52
(u) §D2 (%27‘“1) D1(u1) ( )
and the vector F by

F(i) = (MF <?”1>) . (1.53)

where

div (D(i)Vii) = ) a% (D(ﬁ)%ﬁ> :

1=1,2

The nonlinear functions of the vectorial problem, defined from the phys-
ical functions extended to constants outside the physical domain, verify the
following assumptions:

(H1.1) F is a 2-vector of Lipschitz bounded components. We call Lz the
maximum of the components’ Lipschitz constants.

(H1.2) D is a 2x2 lower triangular matrix whose coefficients are given by
din = M > 0, diz =0, dyy = (Dy(¥) and dyy = Dy(W) = Ds; > 0.
The functions D;(«) and Ds(@) are Lipschitz bounded functions. We
call Dy; the maximum of the components’ absolute bounds and £ the
maximum of the components’ Lipschitz constants.

Since M > 0 and Dy(@) = D, > 0 for all ¥ € IR*, we can choose the
parameter ¢ small enough for D(@) to be definite positive uniformly in «.
Indeed, if we choose

2(MD,)'/?

¢ < :
1Dzl

(1.54)
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where
D2l = sup |Da(d)], (1.55)
2elR2
then it can be shown that
W D(7)6 = min(M, D)wTd, Vi, a0 € R, (1.56)

so in addition to (H1.1) and (H1.2), it is plainly justified to make an extra
assumption on the positiveness of the matrix:

(H1.3) The matrix D(¥) is definite positive uniformly with o, i.e. there
exists a constant D,, > 0 independent of ¥ such that w! D(v)w >
D, 0@ for all 7, € R

1.3.3 Variational formulation

We recall some basic properties about vectorial calculus that will be useful
later on. If 7 : Q € IR* — IR? is a differentiable function, we define its

gradient by the matrix
Vi = (?&) . (1.57)
L ij=1,2

J

We introduce the notation My to denote the set of 2 x 2 matrices with
real components.

From now on we shall denote by a colon the tensorial product in IR* @ IR?,
such that for any A = (a;;); j=12 in My we have

Ov, Ow,
AVy :Vu = g a,,Vv,Vw, = g g al,ua—vuai, (1.58)

w,v=1,2 1=1,2 p,v=1,2

where #, % are differentiable functions from Q to IR®.

Let us remark that if a 2 x 2 matrix A = (ai;); ;=12 is positive definite,
i.e. if there exists A > 0 such that @ A% > X |[&6]* for all @ € IR?, then for a
differentiable function 7 : Q € IR — IR? we have

AVG: VT2 A ([Voi[' + [V |*) . (1.59)
This can be immediately proved if we notice that

AVB VE = a1 |V’1)1|2 —|— a99 |V‘U2|2 —|— (Cllg —|— agl)V‘Ul . V’UQ (160)
2 a1 |V‘U1|2 —|— a99 |V’UQ|2 — |CL12 —|— CL21| |V’Ul| |V‘U2| . (161)
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and choose w; = |Vuy| and wy = —sign(ai2 + a1) |Vvs| in the above defini-
tion of positive definiteness.

It is also clear from (1.58) that for any matrix A € M3(IR) with bounded
components, we have

/Aw: vw:/Ava:W, Vo, € HY(Q,IR?). (1.62)
Q Q
Furthermore, for any matrix A € M, with components in Wh*(Q), the
following Green’s formula
a’—)
/ AVE Vi = — / div (AVY) .0 + / ALY 5 (1.63)
Q Q sn  On
holds for all 7 € H?(Q,R?) and @ € H*(Q, R?).
Using the notations we just introduced and defining V = H'(), the
vectorial problem (1.51) can be rewritten in a weak form as:

Find @ € L*(0,t;V?) s.t. % € L*(0,t5;(V')?) and

i O P
[+ [ DGaeyva: vi= [ Faw)s (1642)
Vi e V2 ae.t € (0,t),
— (1.64b)

This variational formulation will be useful for the expression of the numerical
scheme in section 3.1, and consequently for the error analysis.

1.3.4 Anisotropic problem

When anisotropy is added to the model, as explained at the end of section
1.1, the previous formulations remain the same, except that now the diffusion
matrix D is given by:

D(i) = MO(Vuy) 0 (165)
VN () Do) |

where O is defined by (1.36).

The well-posedness of the anisotropic problem has been studied in [BR].
The main result of that paper is the existence of weak solutions when the
following condition is fulfilled by the anisotropy parameters:

1



1.3. Mathematical formulation 23
This condition is directly linked to the convexity of the anisotropy operator.

This theoretical result has prompted us to look for a change of behaviour
for values of a below and above this critical number, by performing several

numerical tests, which are presented in section 4.3.
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Chapter 2

Sharp-interface limits

Our goal in this chapter is to establish formal asymptotic limits for the
problem defined by the set of equations (1.40) ! for a two-dimensional space
domain 2 when 6 — 0, using when needed assumptions (1.13) and (1.14) on
function p, but never a specific choice of this function. Four different limits
will be considered, characterized by the dependence of the surface tensions o4
and 0P and model parameter M on §. This approach is analog to Caginalp’s
in [Cag89], where he considers various limits of a thermal phase-field model
differing by the behaviour of several model parameters while the limit is
taken. The results of this chapter have already been published in [Kes01].
We assume the boundedness of ¢ and ¢ in the following way:

0<o(x,t) <1, z€Q, t=0, (2.1a)

0 < Cmin <c(2,8) Kmax <1, €, t>0. (2.1b)

We also assume that
D, >0, (2.2)

which means that a pure solid inhomogenous in ¢ is not a stationary solution
of (1.40). We shall only consider the case of two-dimensional space domains.
Finally, we define liquid and solid free energy densities by

fliq(c) = f(c7 1)7 (2.3&)
(e) = f(e,0). (2.3h)

!Notice that in this chapter we are omitting the tildes from the adimensional quantities
defined in section 1.2, so that for instance the parameters we now call § and M were called

§ and M in (1.40).

25
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2.1 Small surface tension limit: classical Ste-
fan-like problem

We consider the limit where §, 04 and o tend to zero with § /o4, §/0P, and
M kept fixed. Let us define a modified adimensional free energy density that
will be independent of § in this particular limit (except for the irrelevant last
term that doesn’t contribute to the derivatives of f appearing in (1.40)):

) 1 (2.4)
= a(c)g(¢) + B(c)p() + 5 [(1 =¢)In(l —¢) +clnc] + dfo(c),

where /é(c) = 6f3(c) and ¥ = v/4. )
Since §/c4 and §/c? are kept fixed, a(c), 3(c) and 4 are independent of
d (see definitions (1.44-1.46)). We also define

jile.6) = 1) — 51— (o). 2.5)

and

Equation system (1.40) can then be written:

520 5

Mﬁ_jfb =8 A¢ — fule, 8), (2.7a)
de VN , A e

pr div {/L(C, b) (fcc(c, P)Ve+ feole, gb)qu)} . (2.7b)

2.1.1 Outer solution

We now consider the previous equations when 4 tends to zero at the macro-
scopic scale: the first equation becomes

A

fd)(ca 99) = 0. (28)

If we assume the constraints (1.14) on function p, pure liquid ¢ = 1 and
solid ¢ = 0 are possible solutions independently of the behaviour of ¢. These
solutions can be proved to be stable with respect to small perturbations for
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positive temperatures. Putting them into the second equation, we get (using
definition (1.26)) respectively

% = D;Ac, on regions where ¢ = 1, (2.9a)
0
8_tc = D,/ c, on regions where ¢ = 0. (2.9b)

Let us now consider the case when both a liquid region €); and a solid
region {1, are present, delimited by an interface I'.  Such a configuration
might locally look like figure 2.1.

Ql Qs
p=1 r 6=0
dc de

8_t_DlAC a—t—DsAC

Figure 2.1: macroscopic domains

We expect to be able to study the transition between the pure phase
regions at a space scale of order § on the direction normal to the interface.
To be able to do this, we assume that the interface (formally defined as the
level set ¢ = 0.5) can be described by a C'? parametrization I'(s, ), and that
a normal velocity v,(s,t) and a mean curvature £(s,t) can be defined at the
macroscopic scale. Under these assumptions, we may define a time-dependent
local invertible change of space coordinates (x,y) < (r,s), where r denotes
the normal distance to the interface and s is a curvilinear coordinate of the
interface. Using Frenet formulae we can then establish the properties:

g_: . (2.10a)
Vr|* =1, (2.10b)
Vr.Vs =0, (2.10c)
Or = - fm. (2.10d)
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Let us assume that the system is liquid at the left (r < 0) and solid at the

right (r > 0) of the interface. We call ¢;(s,t) and ¢,(s,t) the left and right
dc

limits of the “outer” function ¢ when r tends to zero, and o (s,t) and
T/ lig
9 0 0
(a—j> » (s,t) the corresponding limits of a—: = 5" [e(x(r,s,1),1)]. These

values provide limit conditions for the diffusion equations (2.9).

2.1.2 Inner solution

To link the “outer” quantities across the interface, we will formally examine
problem (2.7) near the interface by re-scaling the r coordinate as

r = 0p. (2.11)

Let us now consider the “inner” functions ¢ and ¢ inside the interface
region as functions of the new set of space-time coordinates (p,s,t), and
formally develop them with respect to the small parameter 9 as:

Qb(pasat) :¢0(p,8,t)+5¢1(,0,8,t)+... (212&)
c(p,s,t) = colp, s, t)+ der(p,s,t) + ... (2.12b)

As p — +oo, we take limit conditions for the inner functions that are
Cl-compatible with the outer functions:

pgrgoo dolp, s,t) = 1,p£}r4r_100 do(p,s,t) =0, (2.13a)
. O 5 1:
pgriloo —p(pasat) =0, | (213b)
lim ¢i(p,s,t) = lim %(p 5,1)=0 (2.13c)
p—rtoo T p——too ap T ’
pgrgoo co(p,s,t) = als,t), p—lig—loo co(p,s,t) = cs(s,t), (2.13d)
. 801 8c
1 — ty=| — t 2.1:
Aim 5, (05 t) (ar >Hq S (2.13¢)
. 0c1 8c
1 — )= — t 2.13f
A, 5 5 <ar )Sol (51), (2.131)
. . dco 9 1¢
pgriloo Cl(lo737t) - p_lig:loo—p(pvsvt) =0. (leg)

Inside the re-scaled domain, we can use the interface properties (2.10)
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combined with the rescaling (2.11) and the asymptotic series (2.12) to estab-
lish the following series in §

5% _ —Unaa—? . (2.14a)
52N = a;’f; +6 (a;j; + ’iaai()) T (2.14b)

as well as analogous formal series for == and Ac, and also
Vc-qu:Z—cpo%—l-(SQ(...)—l-.... (2.15)

Order 0 in ¢

The equations (2.7) therefore become at lowest order in 4:

0% p
5,7~ Jolcosd0) =0, (2.16)

d ~ . r . aCO p 0 0
o {M(Coy%) (fcc(Co,qbo)% + fc¢(007¢0)%):| =0 (2.16b)

Let us first look at the second equation. Under assumptions (2.1),(2.2),
the function fi(co, ¢o) defined in (2.5) remains strictly positive in the whole

domain. We know however by (2.13) that a_co and 9% both become zero on
P
the limits when p tends to plus or minus infinity. We may therefore conclude

that

. Oc o 0q
Jfee(co, ¢o)a—p0 + fes(co, qbo)aipo =0 (2.17)
inside all the rescaled interface.
This can be rewritten as

0 ; ,
%fC(CO, qbo) = 0 (218)

In particular, this gives us a first interface condition,

fia(e) = f'(c,), (2.19)

where fiiq and ffOI are defined by (2.6), and ¢; and ¢; are the limit conditions
given in (2.13d)
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Actually, equation (2.18) also tells us that
felcosdo) = C (2.20)

is a constant for all values of p (at fixed s and ¢), and this gives us an algebraic
relationship between ¢q and ¢q. Writing this relationship explicitly, one may
be convinced that it can be described with a uniquely determined function

co = M), (2.21)

which we do not need to write explicitly for our purposes. Therefore,

0 f : ; p ) f A ' 9 ¢
9 F(A(@),6) = CA(9) Lb:% = fs (\(¢0), 60) , (2.22)

and the first equation of (2.16) can be rewritten as

N

= [P0 - 0w

. 2.23
d=d0o ( )

By multiplying this equation by % and integrating with respect to p
0
we then obtain

2 p=+o0

1 |9

2.24
5 |5 L e

p=—00

which, by using limit conditions (2.13) and the definition of A(¢g), gives us
a second interface condition:

A

fr(e) = e = £ e) = fMeden (2.25)

The two conditions (2.19) and (2.25) mean that there is a common tangent
to the graphs of the functions fliq(c) and fSOI(c), tangent to the graphs at
respectively concentrations ¢ = ¢; and ¢ = ¢; (see figure 2.2). Actually, if the
temperature T' of the system is inside the interval delimited by the melting
temperatures of the two pure elements A and B, then there is a single set of
concentrations (cs, ¢;) allowing for such a geometric construction, and these
concentrations, as functions of T, provide the (T,c) equilibrium “lens-type”
phase diagram for the alloy (see figure 2.3, which has been computed using
the same model parameter values as in chapter 4).
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Figure 2.2: Common tangent construction, where ' = fs‘)l(cs) = fiiq(cl) and

N C

C' = flia(e)) — flia(e)e = f5e,) — [ cs)es.

0.6 Q(T) .

04 i

0.2 - i

0 ! ! ! !
1400 1500 1600 1700

Figure 2.3: Equilibrium phase diagram derived from the phase-field model,
using parameters for a Ni-Cu alloy.
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Order 1 in ¢

Using properties (2.14) and (2.15), we can write the equation for ¢ in (2.7)
at order 1 in §, greatly simplified by relationship (2.18):

0,50 = 2 L) [fulens s + Folan b | (226
dp  Op dp
We may simply integrate with respect to p from —oo to +oc to obtain
a third interface condition. Assuming that the normal velocity v,, a macro-
scopic quantity, is uniform in p, we obtain, using (1.25), (1.26) and limit
conditions (2.13):

o p2a (2.27)

—vp(es — ) = Dy 9 E.

This corresponds to the conservation of matter through the interface.

Note that throughout the steps used to derive interface conditions (2.19),
(2.25) and (2.27), we implicitly used constraints (1.13) on function p, but
never needed the extra constraints (1.14).

2.1.3 Stefan-like problem

Regrouping results (2.9), (2.19), (2.25), (2.27), and recalling the definitions
of f and f, we can write the sharp-interface small surface tension asymptotic
limit when d, c%and o® tend to zero with §/04, §/0P, and M kept fixed as
the following Stefan problem:

9 :
%—tc = D/ Ac, in (2.28a)
c ‘ N
a_t = DsAca a II: QS7 (228b)
—vp [c]] = [D—c] , on T (2.28¢)
dn |,

[/l =0, on T (2.28d)
[f = fecl; =0, on T (2.28e)

where [.]] denotes the jump of a quantity across the liquid-solid interface.
This limit can be easily interpreted: on liquid and solid regions there is a
classical diffusion of matter, while through the interface on one hand there
is conservation of matter as the interface moves, and on the other hand
concentration takes liquid and solid equilibrium values on respective sides of
the interface.
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This is the simplest limit we will consider in this chapter, and it is the
concentration problem’s analogue of the classical Stefan problem obtained as
the simplest sharp-interface limit of a thermal phase-field model in [Cag89].
The interface conditions are different in the thermal and solutal problems,
which can be explained by the fact that concentration is a globally conserved
quantity that is discontinuous at the interface, whereas temperature is a non-
conserved quantity that is continuous at the interface, but whose normal
derivative is not.

2.2 Small surface tension, low phase-field dif-
fusivity limit: kinetic effects

We now consider the limit when §,04,0® and M tend to zero with 5/UA2
§/oB, and §/M kept fixed. We use the same modified free energy density f
defined by (2.4) on the last section. We define a new quantity independent

of §:

M= M, (2.29)
)
and the evolution equations (2.7) can then be written
d 06 L, 2 , o
aﬁa—t = 6"A¢ — fy(c, d), (2.30a)
& . A 7 . 7 . . y
= div [ii(e. ) (fuole,0)Ve+ fuale, 9)V) | (2.30b)

The outer solutions will be the same as (2.9), and the macroscopic be-
haviour still corresponds to figure 2.1. All the steps to obtain interface con-
ditions (2.19) and (2.27) depend only on the second equation in (2.30), and
are therefore unmodified; equation (2.18) also still holds. However, the first
equation in (2.16) now becomes

v, Oy 0%y 2 ‘ o <
—M% = 6p2 - f¢(60,¢0), (231)

from which we can derive an analogous of (2.23):

0y 00 _ 9 [F(M6).9) — CN(9)

S 9 = 50 } ‘¢=¢o . (2.32)
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94

Finally, multiplying (2.32) by %, integrating on p and recalling definitions
0

(2.20) and (2.21), we get the following interface condition:

f-fe = ﬁvn (2.33)

{

where

Too 2
X = / % dp. (2.34)
oo | Op

The limit as §, 04, 0® and M tend to zero therefore corresponds to a mod-
ified Stefan problem, equivalent to (2.28) where the last interface condition
is to be replaced by (2.33). There is still classical diffusion on pure phase
regions, separed by d-width interfaces, through which the concentration and
its normal derivative jump in such a way that matter is conserved. However,
the values of concentration on both sides of the interface are no longer equi-
librium values, but are obtained through a “parallel tangent construction”
dependent upon the local interface velocity. On regions where the interface is

static, we find again the equilibrium values of ¢; and ¢ corresponding to the
phase diagram. Note that this limit does not correspond to any of Caginalp’s
limits in [Cag89].

igure 2 ! o1 n = f5(c;) = fi9(c;) and
C" = (f'(c) = fN(eo)es) — (fi(er) — fia(e)er) = Yo,

Figure 2.4: Common tangent construction, where C
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2.3 Similar elements limit: kinetic and cur-
vature effects

We now want to consider a sharp-interface limit with finite surface tension.
However, taking the limit as 0 tends to zero with all other quantities fixed
does not yield valid interface conditions using Caginalp [Cag86, Cag89] meth-
ods as we did in preceding subsections. We therefore choose to have an extra
constraint: we want the coefficient a(c) defined in (1.45) to be a constant at
lowest order in 4:

alc) = a+ §dAae. (2.35)

This is equivalent to assuming that the quantity

T g o)
B A ) o -

is of order ¢, i.e. that the two components of the alloy are similar enough in
the sense of (2.36). Another interpretation of this assumption can be given
using the potential barrier heights W4 and W? defined in (1.21): as § tends
to zero, both potential barriers become infinite, but their difference (weighted
by respective melting temperatures) is kept fixed.

We introduce yet another modified free energy density:

f(c7 qb) = f(cv ¢) - gg(qb)

= Aacg(9) + B(e)p(é) + % (1 — ) n(l — ) + clne] + folc).

(2.37)
The equations (1.40) can then be written as
5% 0 o, : Ny
am—f = 8206~ a(6) — 6ule,0) (2.38%)
= = div [u(c,9) (Jeele, 8) Ve + Fus(e, 4)V9)] (2.38b)

In the asymptotic limit as ¢ tends to zero, for the outer solution, equation
(2.8) is now replaced by

() =0. (2.39)

This still gives the same behaviour as (2.9) outside the interface, but we no
longer need to assume that the constraints (1.14) on function p are satisfied.
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As for the inner solution, the second equation in (2.38) is analogous to
the second equation in (2.7), and will therefore yield interface conditions
analogous to (2.19) and (2.27). Noting that

(2.40)

we conclude that the two interface conditions on ¢ obtained in this case are
actually strictly equivalent to (2.19) and (2.27).

We must now look at the evolution equation for ¢ in (2.38). At lowest
order in ¢ it becomes simply

0%bo
dp?

— ag(¢0). (2.41)

With the limit conditions (2.13), and fixing ¢o(0) = 1, this equation (which
is essentially the same as (1.16)) has a unique solution:

1
wolp) = 7, L (2.42)
This doesn’t give us an interface condition yet, so we must look at the
next order in § of the first equation in (2.38). Using formal series (2.12), and
definition (2.21), we get:

‘U_na% . 9’y n Kaqﬁo

Moy g TN, 09 (@0)dr— fo (M), do). (2.43)

Let’s call A the operator

— 82
We can then rewrite (2.43) as
. Un a¢0 i / / ‘
Ay = (s +37) 5o = Je (o). ), (2.45)

and by differentiating (2.41) with respect to p we find that

R

= 0. 2.4
o5 Y (2.46)
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In fact, A is a self-adjoint operator on functions satisfying limit condi-
tions (2.13), for the L? scalar product on variable p. Therefore, we have an
orthogonality condition for (2.45) to be solvable when (2.46) is true:

() [ |2f

o0

+ oo

do= [ FoOeuan) Gdp=0. (27

Using limit conditions (2.13) and equation (2.22) with definitions (2.20)
and (2.21), we then find the following interface condition:

U<ﬁﬁ=k@+%}, (2.48)

where the explicit form of constant x can be obtained using (2.42):

+20 | 9y | 1»/&
N ——| dp = —4/—. 2.4
% /_m =33 (2.49)

The limit where ¢ tends to zero with A« fixed therefore also corresponds
to a modified Stefan problem, similar to (2.28) where the last interface con-
dition is to be replaced by (2.48). There is also still classical diffusion on
pure phase regions, separed by 6-width interfaces, through which the normal

derivative of concentration jumps in such a way that matter is conserved.
However, the values of concentration on both sides of the interface are now
obtained through a “parallel tangent construction” dependent upon both lo-
cal interface velocity and local curvature. On regions where the interface
is both planar and static, we find again the equilibrium values of ¢; and ¢;
corresponding to the phase diagram.

This limit corresponds to Caginalp’s “modified Stefan model” in [Cag89]
and is equivalent to Warren’s fixed surface tension limit in [War95]. An
expansion of f and f. in interface conditions (2.19) and (2.48) results in
conditions very similar to (C) and (D) in [War95, p. 42]. They differ in
certain factors T/T4 and T/T2, due to the fact that Warren and Boettinger’s
original model was derived from an entropy formulation, while we used a free
energy formulation. Note also that Warren|War95] remarked that 74 — T_B as
a consequence of asymptotics obtained before adjusting model parameters
whereas we found that such a requirement was technically needed to be able
to derive this particular asymptotic limit after adjusting model parameters.

Note that the solvability condition technique implemented through the
operator A can also be used to obtain an interesting limit in the case of a
pure element (¢ = 0 or ¢ = 1). We then have only the equation for the
evolution of ¢ in (2.38). The outer solutions will still be chosen as liquid
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(¢ = 1) on the left and solid (¢ = 0) on the right of the interface. The inner
development will however now yield only one interface condition, which in
the case of pure element A would be:

Lo _ 1T
"TMT Y T oA 1A

(2.50)

This describes an interface moving by mean curvature. The preceeding
equation can also be compared, when k£ = 0, to phenomenological laws, in or-
der to adjust M with a known kinetic coefficient, and have a numerical value
to use on the original phase-field model. For instance, Warren and Boettinger

[WB95] choose M to fit Coriell-Turnbull’s model kinetic coefficient.

2.4 Similar elements limit with large phase-
field diffusivity: curvature effects only

We consider the same conditions as in the last subsection, except that now
the quantity

M= M§ (2.51)

is supposed to be fixed.

With analogous steps, we find a similar limit problem as in the last para-
graph. It is also a modified version of problem (2.28), where the last equation
is replaced by

[f — fuc], =& (2.52)

The “parallel tangent construction” is now dependent upon local curvature
only, and the equilibrium values of ¢; and ¢; corresponding to the phase
diagram can now be found on all regions where the interface is planar, even
if it moves. This last limit corresponds to what Caginalp [Cag89] called an
“alternative modified Stefan model” in the thermal case.

2.5 Summary of the results and physical in-
terpretation of the limits

The limit problems for the evolution equations (1.40) when the interface
thickness § vanishes, as seen in sections 2.1-2.4, all have the generic form of
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generalized Stefan problems:

9 :

g_j = D[AC, m Qly (253&)
c ‘ o
P D,/\c, . in Q, (2.53b)
—v, [c]] = {D—c} , on I, (2.53¢)

on |,
[fel; =0, on T, (2.53d)
[f = fec]] = A(vp, k),  on T. (2.53€)

In all of these limits, pure liquid (2.53a) and pure solid (2.53b) regions
with classical diffusion coexist, separed by sharp interfaces that evolve ensur-
ing the conservation of matter (2.53c). Moreover, the values of concentration
at the interface can be obtained through a “parallel tangent construction”
((2.53d) and (2.53e)), using solid and liquid free energy densities, and de-
pendent either on the local interface velocity, the local interface curvature,
both or none, through the generic affine function A(v,, ). This function is
dependent on the type of limit:

section | 04,08 T4 TB M A
21 | 008) | 00) |00 0
22 | O() O() | 0() || x vn (2:54)
23 o) | 00 o)« s+
24 |01 | 00) [0« =

For the asymptotic limits presented on sections 2.3 and 2.4, all the steps
of the asymptotic analysis and all the results depend on the choice of a
function p only through its regularity (it should be at least C'') and through
its values at ¢ = 0 and ¢ = 1. The constraints (1.13) are therefore sufficient
to get the proper limits. The extra constraints (1.14), while necessary to
have a thermodynamically consistent mesoscopic model, are not necessary to
get these limits. Therefore, instead of the function (1.15), we could simply
define p as

p(¢) = ¢ (2.55)

and still get the same limits.

However, to get the low interface thickness at low surface tensions asymp-
totic limits presented on sections 2.1 and 2.2, the extra constraints (1.14) on
function p are also required.
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We now give a concise interpretation of each limit. Limit 2.1 clearly cor-
responds to an equilibrium state, and is of little interest for the solidification
at finite speed of alloys. Limit 2.4 can describe solidification of microstruc-
tures at low speed in which the curvature contribution is dominant and the
attachment kinetics is negligible. This typically occurs for metallic alloys so-
lidified under conventional conditions and for systems which are undergoing
coarsening. This situation can be approximated by choosing a high value for
parameter M in the phase-field model. Limit 2.3 describes the case of fast
solidification of metallic alloys or more generally the solidification of complex
alloy systems (e.g., molecules such as oxides) in which both curvature effects
and attachment kinetics are playing a role. Finally, limit 2.2 can describe
the solidification of complex alloys in which the curvature contribution can
be neglected (e.g., Bridgeman solidification under planar front conditions of
a complex alloy system).



Chapter 3

Numerical scheme and
convergence

The main goal of this chapter is to prove the convergence of a finite ele-
ment in space, semi-implicit Euler in time numerical scheme for the isotropic
problem (1.51). This is the result of a joint work with J. F. Scheid, presently
submitted for publication.The key ingredient of the proof is the introduction
of a generalized vectorial elliptic projector.

3.1 Numerical scheme

We want to approximate the isotropic problem (1.51) by a IP; finite element
in space, semi-implicit Euler in time discretization. This scheme was first
used for this problem by O. Kriiger in his Ph.D. thesis [Kri99].

To begin with, let us introduce some notations. We denote by T}, a regular
triangulation of the domain € (see [Cia78, p. 132]), where h is the diameter
of the biggest triangle in 7. From now, we shall assume that the domain €}
is a convex polygonal subset of IR*.

We will need the following extra assumption for some properties of the
elliptic projector and for the convergence theorem:

(H3.1) The triangulation 7, verifies an inverse assumption i.e. there exists
a constant C' such that h/hx < C, VK € T, where hx stands for
the diameter of the triangle K.

We now define the finite element spaces

Vi={vn € C°Q);  wilx € Pi(K), VK €T}, (3.1)

41
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and
VhZ = Vh X Vh, (32)

where IP;(K) denotes the set polynomials of degree 1 in the triangle K.

As in the previous chapters, we denote by s a final time. For a given
integer N > 1, we denote by 7 = t;/N the time step and by t" = n7, the
current time for n = 0, ..., N. From now on, we assume that the initial data
iy belongs to H%(Q;R?) so that it is a continuous function. We denote by
r,, the Lagrange interpolation operator both in Vj, and in V}?, and remark
that r,to is well defined. Based on the variational formulation (1.64), we
now introduce an approximate problem for @}, approximation of the exact
solution w(t"):

Forn=1,...,N, find @} € V;? such that for all &, € V}?,
ar — gt . (3.3a)
/ T 5, 4 / D(E" )V} : Vi, = / F(ap).in,
Q T Q Q
79 = ryio, (3.3b)

where 6 € [0,1] and the vector wi" is defined from @} = (u},,uy,)" and @)~

by

o 1= 0)uj" + bul
G = ( (1= Opuiy + Oui ) . (3.4)

Ugp,

It is easy to see that for all § € [0, 1], the discrete problem (3.3) has
a unique solution. This is clear from the fact that the matrix D(u) is

lower triangular and that its diagonal is positive. So, at first, from @} ™' =

(it ul )T we determine uf, by restricting (3.3a) to the case of @, =
(v, 0)T, for all v, € Vj; then since the second element of w¢" does not de-
pend on @} at all, we determine u}, by restricting (3.3a) to @ = (0,v,)%, for
all v, € V,. Also, for any 6 € [0, 1], we do not have to solve nonlinear alge-
braic equations at each time step, while still granting convergence without a
condition linking A and 7, as we will see in the next section. Finally, note
that in the approximate problem (3.3) we consider, no numerical integration
is assumed.

In section 3.2 we will introduce a generalized elliptic projector, which will
be the main tool used in section 3.3 to derive a priori error estimates for the

scheme (3.3).
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3.2 Generalized elliptic projector

We introduce a vectorial elliptic projector which is a generalization of the
scalar elliptic projector used for instance by V. Thomée [Tho91]. Throughout
this section, we deal with a 2 x 2 matrix which is neither assumed to be
triangular nor symmetric. In particular, Theorems 3.1-3.3 are valid for a
general 2 x 2 matrix.

We consider a time dependent matrix D that will depend on both space
z € Q and time t € [0,¢] coordinates, and we define a time dependent
generalized vectorial projector. We will assume that:

(H3.2) D € C°([0,t4]; L (Q, M3)).

(H3.3) D is uniformly positive definite, i.e. there exists a constant B inde-
pendent of = and ¢ such that @7 D(z,t)% > 3w for all @ € IR* and
a.e. x € Q, Vt € [0,14].

We introduce a time dependent bilinear form in H*(,IR?) defined for all
t e [0, tf] by

—

5752 € Hl(‘Q?]RQ) — at(ghf?) - /

Q

D(t)V5:Vé+Aé-é, (3.5)

Assumption (H3.2) implies that a; is continuous in H'(£2, IR*) uniformly in
t,1.e.

at(ghé) < a”glHHl(Q,B2)HéHH1(Q,IR2)7 \V/glvé S Hl(”JRQ)? Vi > 07
(3.6)

where a = maX(||DHLoo(o,tf;Loo(Q,M2)) ,1) is independent of ¢.
Furthermore, under assumption (H3.3), using equation (1.59), one can
also see that a; is coercive uniformly in ¢, i.e.

—

at(é ) > ﬁHgHHl(Q,IW)a \V/EE HI(Q71R2)7 vt > 07 (37)

where 3 = min(fi’, 1) is independent of ¢.
We can now define the time-dependent generalized vectorial elliptic projector.

Definition 3.1 Under assumptions (H3.2) and (H3.3), we define the time-
dependent generalized vectorial elliptic projector (GVP)

T CU([0,¢5]; HY(Q,IR?)) — L™ (0,t5; V)

g'—”Thg
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by the relation

— —

al€(t) — mifl0), ) = 0, Vi€ VP, Vie (o], (3.8)

— -

where we introduced the short notation mp€(t) for (mrp€)(1).

Lax-Milgram’s lemma together with (3.6) and (3.7) ensures that =, is well-
defined.

We now state some important properties of the time-dependent GVP,
which will be proved after introducing a lemma. In particular, we derive
error bounds that will be key ingredients for the proof of Theorem 3.4 in
section 3.3 .

Theorem 3.1 We assume (H3.2) and (H3.3). If in addition we assume
that D € L™ (0,t;; W' (Q, My)), and also that EE Cc° ([O,tf]; H*(Q, ]RQ)) ,
then ﬂhg is an element of C° ([0,t]; V}?), and there exists a positive constant
Cy independent of h, such that

1€ = €l o 0. 2@ m2)) F AIE = Trlll o (0,1 @ 12)) S b (39)

Theorem 3.2 We assume (H3.2) and (H3.3). If in addition we assume

that D € L* (0,5 Wb (Q, My)) N H* (0,t;; L=(Q, My)) and also that

EE H! <O,tf; HQ(Q,IRQ)) then mfe H' (0,t5; V}*) and there exists a positive

constant Cy independent of h, such that

Ha% (€= md) oh Ha% (€= mé) <ol
)) L2(0,tf;H1(Q,IR2))

2 (o,tf;fﬁ(Q,IR?
(3.10)

Theorem 3.3 Let assumptions (H3.1), (H3.2) and (H3.3) be fulfilled. If
£e H (O,tf; H*(Q,R*)) N L* <O,tf; WI’OO(Q,IRQ)) then there exists a posi-
tive constant C3 independent of h, such that

HVﬂ-thLoo(07tf;Loo(Q7M2)) < CS- (311)

Remark: Theorems 3.1 and 3.2 are still valid in space dimension 3. How-
ever, Theorem 3.3 is not. Indeed, in that case the right-hand side C5 in (3.11)
would no longer be a constant but would depend on A~1/2,

We will need a lemma for proving Theorems 3.1-3.3. This lemma extends
a regularity result of [Gri85] from scalar elliptic problems to elliptic systems.
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Lemma 3.1 Let A € W (2, My) be a uniformly positive definite matriz
and let b € L*(Q,IR?). Then the solution © € H'(Q,IR?) to the equation

/Avw;vzn/w-ﬁ:/z-ﬁ, Vi e HY(Q,R?), (3.12)
Q Q Q

is actually in H*(Q, IR?) and satisfies 0w /dn = 0 a.e. on Q. Furthermore,
there exists a constant Cy independent of b such that

H'LUHHQ(Q,]RQ) < C4HbHL2(Q,]R2)' (3.13)

Proof of Lemma 3.1

olet b= (by,b2) € L*(Q) x L*(Q). According to Lax-Milgram’s lemma, there
exists a unique solution @ = (w;,wy) € HY(Q) x H(Q) to the equation
(3.12). We call a;j, 7,7 = 1,2, the coefficients of A, and we notice that they
are elements of W1°(Q). Since A is uniformly positive definite, there are
three positive constants 3;, 1 = 1,2,3, such that 0 < 3; < ay; < [y and
a11G23 — a12ag1 = 3 > 0. Under the lemma’s assumptions, Grisvard’s result
[Gri85, Thm. 3.2.1.3] tells us that there exists a unique w, € H*() verifying
homogeneous Neumann boundary conditions such that in €2

— div <<a22 — %CLlQ) V‘ll’g) + ‘UNJQ
a1

= b? - @(bl — 'wl) + \Y% <?) . (aHV'wl —+ a,lgvu’g) . (314)
11

a1

For the same reasons, once wy; € H?*(Q) is given, there exists a unique w; €
H?*(Q2) verifying homogeneous Neumann boundary conditions such that in €

—div (CL11V‘U~)1) + ’LT)l = bl -+ div (Cl12V’LT)2) . (315)
elet us write a weak form of (3.14): For all v in H(1),

/ <a22 - @a12> Vi, - Vo + / (ﬁrQ _ dudn ) v
Q ail o w1
& ar Q a1

Furthermore, if we choose ¢ = (%v, —v)T as a test function in (3.12), we

obtain that for all v in H'(1),

21 21011
/ <—Cl12 — a22> Vw, - Vo + / ( — w2> v
o \ 11 Q w

= —/ (a11V‘UJ1 —|— CL12V‘UJ2) <a21> v —|— <%bl - bz) . (317)
Q Q
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Adding (3.16) and (3.17), we find that

aii

/ <G22 - %am) V(wg — ) - Vv + (wy — @2)v =0, (3.18)
Q

for all v in H*().

elet us now write a weak form of (3.15): For all v in H'(Q),

/aHle VU—I—/wlv—/blv—/ame - V. (3.19)

If we then choose ¢ = (v,0)T as a test function in (3.12), we obtain that for

all v in H'(Q),
/ (Cl11V‘w1 + CL12V‘U)2) . V’U —|— / v = / bl‘U. (320)
Q Q Q
Substracting (3.19) from (3.20), we find that for all v in H'(Q),
/ a11V(’w1 - '1131) . V’U —|— a12V('w2 - UNJQ) . V‘U —|— ('wl - ’Lbl)’U = 0 (321)
Q
oBy first Chosing v = wy — Wy in (3.18) and then v = wy; —w; in (3.21), w

conclude that w; = @; and wy = ;. Therefore @ = (wy,wy) € H*(Q, ]RQ)
and w satisfies

—

—div(AVW@) + @ = b, a.e. in €2, (3.22)
g: =0, a.e. on 0f). (3.23)

eUsing the assumptions on matrix A, it follows from (3.14) and (3.15)
with estimate 3.1.3.3 used in theorem 3.2.1.3 from [Gri85] that there exists
a constant Cs > 0, depending only on the W'* norm and the positive
definiteness constant of matrix A, such that

@y < Cs (Il oy + 18z ) - (3.24)

On the other hand, we obtain from (3.12) with ¢ = @ that there exists a
constant Cg > 0 such that

H’LBHHl(mR?) < CGHbHLQ(Q,lRQ)' (3.25)

Combining (3.24) and (3.25) we find the estimate (3.13) stated in the

lemma.
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[

Remark: We believe that this proof could be generalized to an elliptic

system with more than two unknowns, the guiding principle being the LU
decomposition of matrix A.

We will now proceed to prove Theorems 3.1-3.3.

Proof of Theorem 3.1

e We note r;, : C°(Q,IR*) — V;? the IP;-Lagrange interpolation operator
on V2. Tt is well known (see e.g. [Cia78]) that the interpolation error on H*
norm can be estimated by

|0 — Th’lE“L?(Q,IR?) + hjw - Th’lB”Hl(Q,lR?) <Crh? @] 122,12
vV € H*(Q,IR?), (3.26)

where |.|f2(qr2) denotes the H?* semi-norm and C7 is a positive constant
independent of @ and h.

With the previously introduced notations, we can write that for all ¢t €
[0, %], using first the coercivity (3.6) of a;, then Definition 3.1 and finally the
continuity (3.7) of ay,

BIE) — muf(0)llFn < an(é(t) — mal(t), E(¢) — maé(1)) (3.27)
< ar(€(t) = mi(), (1) — v 5( t) (3.28)
< all€(t) = ()1 I1€(8) = ra(@)l] 2. (3.29)

. Using the interpolation error estimate (3.26), and since g(t) is in H2(9), IR?)
for all ¢t € [0,%f], bounded independently of ¢ we find that

—

1€(6) = Tl e (0. ) < O (3.30)

where Cyg depends on HEHLOO (017522, 1R2)) and is independent of h.

e For the L?-error estimate, we use Aubin-Nitsche’s technique, by intro-
ducing the dual problem to the definition of Whg(t). We define, for a fixed
t € [0,y], the auxiliary function @ € H'(Q, IR?) as the solution to the adjoint
equation:

a:(7,8) = /ﬂ (*(t) . *(t)) .7, for all ¥ € H'Y(Q,R?). (3.31)
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Once again, Lax-Milgram’s lemma ensures that & is well-defined. Using
(3.7), the regularity of D and E, and Lemma 3.1 with A = DT, we obtain
that @ € H?(Q,IR?) and that there exists a constant Cy independent off
and A, such that

0] g2(o,m2) < Coll€ — mhél| L2 o,m2)- (3.32)

From equation (3.31), Definition 3.1 and the continuity (3.6) of a;, we
find that

I€(t) — T3 = ar(€(t) — mré(t), @) (3.33)
= a(€(t) — m(t), & — 7)) (3.34)
<wﬂw—mimmww—mwm (3.35)

Using result (3.30), interpolation estimate (3.26) and the dual H?*-bound
(3.32), we find that there exists a positive constant Cyg such that

_)( t)—m g( t) < Choh?, (3.36)

12(2,R?)

and since this last inequality is valid for any fixed ¢ € [0, ], we obtain
1€ — thHLoo(O,tf;LQ(Q,]RQ)) < Cuh?, (3.37)

where Cy; depends on [|{]|; (0,45:H2(2,R2)) and is independent of &.

This last inequality, together with (3.30), proves inequality (3.9). To
complete the proof of the theorem we still need to verify that 7;£ is indeed
continuous in t.

o Let s,t € (0,t). From (3.7) we find that

— — —

Bllmnf(t) = mé() 3 ey < aelmi€(t) — mals), mé(t) — mif(s)).  (3.38)

From Definition 3.1, it follows that

/3H7rh_)( ) (S)HHl Q,R?)
ar(€(t), mhé(t) — mn€(s)) — as(&(s), mué(t) —
<é@»ma>—ma@wwx WE(s),m E
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Using (3.5) and regrouping some terms we find that
%3||7Thé?(t) - Whg(S)Hill(Q,le)
< D(OVE) — D(s)VE(s)) : V (mr€(t) — mhé(s
[ (009€0 - De)VEW) 5 (miélr) - miél)

4+ /Q (D(s) — D(1)) Vﬂhg(s) V(g _)(t) — Th _)(5)>

Using Holder’s theorem we then find that

—

Bllmré(t) — ma€(s)]l ey < ID(E)VER) — D(s)VE(S)|| oo me
+1D() — D(8)] = ot |74 E() ey + 1€(E) — E(8) || oq e~ (3:41)

This last inequality holds for any s,¢t € (0,t5). We know, by (3.9),
that |[71¢(s)||g1(@r2) is bounded independently of £, so it becomes an im-

mediate consequence of (3.41) and the theorem’s assumptions that whE €
00(07 Lf; Vh2)‘
|

Proof of Theorem 3.2

o We take advantage of the fact that V) is a finite dimensional space. Let’s

call m;(¢) for ¢ = 1,... ,2n;, the coordinates of mf(t) in a basis of V}? defined
by a set of linearly independent elements {';/71, e ,‘LZth}, where nj, is the
dimension of V},, i.e.
2np
mE(t) = Y milt)d; (3.42)
i=1

Definition 3.1 can then be translated as:

—

AR = b(t), Ve [0,t/], (3.43)

where

3y

(1) = (7i(1)1¢i<zn, - (3.44)

60) = (uO)scecan, = ( [ DOVED: 90+ [ El0) ¢) ,
T s.45)
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and

() = (ars(1))cp s, = ( / DUV, Vi + / 'ﬁj.iﬁk) k
1<k, 5<2n,

(3.46)

By the existence and uniqueness of 7(¢) (Lax-Milgram’s lemma), we know
that A(t) is invertible for all ¢ € [0,f] and we get

7(t) = AN )b(t),  Vte[0,ty]. (3.47)

Since H'(0,%;) is an algebra and A(t) is invertible for all ¢ € [0,¢/], it
is clear that b € HY(0,t;;IR*™) and A™' € HY(0,t5; My, ), and therefore
7 € H*(0,t5; IR*). Thus we have that mfe HY(0,t; V).

e We now differentiate equation (3.8) with respect to ¢ and obtain

J (> s 2 : :
+ /Qa_t <§(t) - th(t)> Wy =0, YU, eV,, ae in(0,t5). (3.43)

From now on we will be writing inequalities valid for almost every
t € (0,t5). From (3.7) we infer that

2

HY(Q,R?)
<ap (a% (E(t) _ whg(t)) , a% (E(t) _ m{(t))) . (3.49)

— —

Using the definition of a; and equation (3.48) with @, = ry€(t) — mr€(1),
it follows that
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Using Cauchy-Schwarz’s inequality and the triangle inequality it follows
that

b 57 (60 - méio)

<(wx>mwQM2
LOOQM)

H - mf(ﬂ)
|
(HS(t) - rhf(t)‘ . mR?)) . (3.51)

The operator d/dt, which acts on time and the operator rj;, which acts
on space, commute, so from (3.26) we find that

_|_
v

FAGERE0)

HY(Q,R?)

+[|ée) - mélo)

H1(2,R?) H1(Q,R?)

£(t) - "Thg(t))

H(Q,IR?)

3

< Crh éht()

\\ (1) - (o) (3.52)

H(Q,R?) H2(Q,R?)

From (3.51) together with Theorem 3.1 and estimates (3.26) and (3.52),
we find using Young’s inequality that there exists a constant C5 such that
for almost every t € [0,¢/],

where we used the theorem’s assumptions stating that g(t) is bounded in
H*(Q,IR?) and D(t) in L>(£), M), independently of .

Equations (3.49) to (3.53) are valid almost everywhere in (0,%;) and
both sides of inequality (3.53) are elements of L*(0,¢;). We therefore in-

tegrate inequality (3.53) to conclude from the regularity assumptions on E

%

h2
at

LOO Q Mg)
(3.53)

|2 (6 -méo)|  <cu

H1(Q,R?)

?

and on D that there exists a constant (3, which depends in particular on
Haf/aty\L2(07tf;H2(ﬂ7RQ)) and on H@D/atHLl(OM;LOO(QJRQ)), and is independent
of h, such that

< Cish, (3.54)
2 (o,tf;Hl (Q,]RQ))

H — ”rhf
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e In order to get an L?-error estimate, again we use Aubin-Nitsche’s
technique. This time we define w(t) € H'(Q,IR?) as the solution to the
adjoint equation:

o /- .

at(ﬁ,w(t)):/a—t<§(t)—7rh§(t)> 7, Woe H'(Q,RY), ae.te(0,t)).
Q

(3.55)

Thus @(t) is well-defined a.e. in (0,%;) and applying Lemma 3.1, we find

that w(t) € H*(Q,IR?) and 9%/dn(t) = 0 a.e. on 9N, for a.e. t € (0,¢;) and
that there exists a constant C14 > 0 such that,

, ae. t€(0,ty).
L2(Q,IR?)

9 (éw - méw)

H'LU(t)HH%Q,m?) < Cu

(3.56)

Using (3.55) and (3.48), we find that, a.e. in (0,%y),

22(Q . = a, (0% (g(t) — T H(t)) ,uw(t) — rhu—j(t)>

L

— | L )V(ER) — ) - Va(t). (3.57)

Applying Green’s formula (1.63) with property (1.62) to the last term of
the right-hand side, and using the continuity (3.6) of a;, we find that, a.e. in

(07tf)7

L2(Q,IR?)

<ww—mwmmmm(a

5 (éw) - méw)

H1(Q,R?)

oD

+ Hﬁ—t(t) I€(t) — 7 H(t)HHlmJRQ))

Lee (Q,Mg)

+ /ﬂ (vaa—f(t)Tvm aa—f(wTAw) - (E(w—m ﬁ(t>) - (3.58)
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Integrating on time and using Cauchy-Schwarz’s inequality, we find that

2

[7 (€=
L2 (o,tf;L2(Q,1R2))

2 (€-md)

1€ = 711l (0.0 1))
L2(0,t ;5L (2,M2) ) (015 ) (3.59)

<@ — Th'LBHH(o,tf;Hl(Q,IRQ)) (a

“la

v 52

L2 (O,tf;Hl (Q,]R?))

H‘L5||L2(o,tf;H2(Q,11¥))

L2(0t W1 (2,M5) )
) Hf - thHLOO(o,tf;H(Q,]R?)) :

Using then (3.54) and Theorem 3.1, we obtain that there exists a positive
constant Ci5 which depends on HDHHl(O LWL (M) but independent of A

such that

H —mf

L2(0,t;5L2(Q,1R?))
< Cis (h [0 — Thw”ﬂ(o,tf;Hl(Q,m?)) + 1 H'LU||L2(o¢f;H2(Q,m2))> . (3.60)

From interpolation estimate (3.26) and the H?*-norm estimate (3.56) together
with (3.60), we conclude that there exists a positive constant C'j¢ independent

of h such that

< Oy 2. (3.61)
L2(0,tf;L2(Q,IR2))

Proof of Theorem 3.3:

Using assumption (H3.1), we can write the following inverse inequality in
Vi (see [Cia78], p.140): there exists a positive constant Cy7 independent of
h such that

IVorll @y < Corh™ IVonllpqmey - Yon € Vi (3.62)

Remark: In the case of space dimension 3, estimate (3.62) would actually go
as h=3/2,
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— —

Therefore, since m,£(t) — rpé(t) € Vj2, we have for a.e t € (0,1y):
IV (& (1) = ra(0)) | (@.ame)
Crrh ™| V(€ (1) = (D)) 2@,
Corh™ (9 (€)= €0 1o(nne
HIVED =€) @)

Then using interpolation estimate (3.26) and (3.30), we infer that for a.e.
t€(0,ty)

<
<

IV (mrE(t) — ra€(t)) || (@ans) < Cls, (3.63)
where (g is independent of /&, and depends on HgHLoo(o 1 H2(QR?))

On the other hand, we can estimate a W1 *-interpolation error for E For
the Lagrange interpolation operator, we have that (see [Cia78], p.121) there

exists a constant (19 independent of h and gsuch that, for a.e. t € (0,t5),

1E(t) — ) lwroiamey < Croll€) lwreo ey (3.64)

and therefore

IVrRE() || Lo @ma) < NIV (RE(E) = E0) | @mta) + IVED) 2= (2,00)

< |
< (L4 Coo)l€) [ (. my-

(3.65)

Finally, using (3.63) and (3.65), we find that there exists a constant Cyg
independent of h such that for a.e. t € (0,¢;)

IV T ()o@ ntn) < NV (mRE() = ()l t@,m) + IV PRED) [ (0,00)
< Cao.
(3.66)
Theorem 3.3 is thus proved. [ |

3.3 Convergence result

The following theorem states the main result of this chapter, concerning the
convergence of the solution «} of the discrete problem (3.3) to the exact
solution @ of the continuous problem (1.51).
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Theorem 3.4 Let assumptions (H1.1),(H1.2), (H1.3) and (H3.1) be ful-
filled. If the solution @ of problem (1.51) belongs to H(0,ts; H*(Q,IR?)) and
to L™ <O,tf; Whe(Q, IRQ)), then there exist two positive constants C' and 7*
independent of h and T such that for 0 < 7 < 7%,

max |[|@(t") — Uy || 2o me) < C(h* + 7). (3.67)

og<ngN

The proof of Theorem 3.4 relies on the introduction of the generalized
vectorial elliptic projector from section 3.2, in whose definition we choose
matrix D to be in fact D(u), where « is the solution of problem (1.51) and
D(-) is defined by (1.53). First of all, let us remark that the assumptions
of Theorem 3.4 imply the assumptions of theorems 3.1, 3.2 and 3.3, so we
can define m, € H'(0,¢;V}?) and use all the properties implied by those
theorems. Also, from now on, ||.||, will denote the norm of L*(Q,1R?) or
L*(Q), M), as appropriate, and @, the space-time domain (¢*~*,¢") x Q.
We also introduce the notation

g = ! /tt g(t)dt (3.68)

T n—1

for the average of an integrable function g on [¢t"~%,¢"]. Finally, let us define
the auxiliary function

duy, = mpu(t™) — uy, (3.69)
forn=0,...,N.

We now proceed by introducing four lemmata, which will be used for
proving Theorem 3.4.

Lemma 3.2 Under the assumptions of Theorem 3.4,

a2
J N ?
—(’,Th‘lj - l_j) ‘ < - —(lj - ’,'Th‘lj) (370)
‘ ot . 7 ot 12(0n)
Proof
Using Cauchy-Schwarz’s inequality, we get
|2 n 2
0 L 1 [0 ..
a—t(ﬁhu — ) = / - / a—t(whu —u)dt| dx
0 @t Jend (3.71)
1" ?
/ — / —(mpi — W)| dtdz,
QT Jim—1 at

where |.| stands for the vectorial norm. |
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Lemma 3.3 Under the assumptions of Theorem 3.4,

— —
U — TRrU

1 2
< Mg — U 2 . 372
S LR (3.72)

0

Proof
The result is straightforward with a computation similar to the one used to
prove Lemma 3.2. |

Lemma 3.4 Under the assumptions of Theorem 3.4, there exists a constant
Cy1 tndependent of h such that

—

HF F—*nl

Proof

The left-hand side of the inequality we want to prove can be read as

2
0 Q

We use Cauchy-Schwarz’s inequality and the Lipschitz assumption (H1.1)
on F'in order to get

8‘7 e =t + H(sa;;—lug) @

Fli) — Fay™) . /(F( (1) - F(i;™)) dtrd:c. (3.74)

T

Fa) — F),

—

2
/ / ~F@ [ dtde
QT Jm—1
L2
< —F m)—ﬁz—l\? dt dz
QJn—t
2L%
< i(t) — it )| + |a) — i) de d:c) .
Q Jen-t
(3.75)
. . . o b oou
Now, since we have the following relation w(t) — @(t"™ ") = Y —(s) ds, for
n—1
all t € [t"1,1"], it is easy to see that
tn a‘—) 2
/ / la(t) — a(t* )" dt de < 7 2 : (3.76)
Q 7571—1 at LQ(Q’H)
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Then we infer from (3.75) and (3.76) that

— 12
ou

2L2
a1 + by

L2(Qn)

a ) — @, (3.77)

- N = 2
HF('J) — ;)| <2rck

Finally, introducing projector m,u(¢"~') in the above estimate, we obtain the
wanted inequality, with Cy; = 4/3%. |

Lemma 3.5 Under the assumptions of Theorem 3.4, there exist two con-
stants Cay and Cy3 independent of h such that

2
HD('LBi”)Whﬁ(t”) — D(id)Vmyi ‘0
¢ — — —n— 2 —n
< 022 <2 HU — TRU ‘i‘x’(o,tf;LQ(Q,IRQ)) ‘I‘ H(Suh IHO ‘I’ 02 H(suhHg>
ou ? aﬂ'hﬁ 2
C — . (3.78
+ CoaT (H ot | H ot 2(@x) ( )

Proof
Using Cauchy-Schwarz and Young’s inequalities, we can separate the left-
hand side of inequality (3.78) in two terms as

2

Hp(wzn)whﬁ(tn) D@V

0
2

<2 (D) - D@") Vmnia(r)|

2

42 HD('J)anhﬁ(t”) —_D@Vma || . (3.79)
0
- We will start by estimating the first right-hand term of (3.79):
. 2
H (D(w;in) ~D(@) ) V(")
0
2 2
¢ 12 —0n N <
<2V} o ey O || P ) = D@, (3:80)

1,5=1
where D;; stands for the components of matrix D.

We now introduce an auxiliary function

B (1) = ( (1- 9)“;5? t‘_%* fu(t) > Cforizr (381
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For all combinations of 7,7 = 1,2 and for n > 1, we have

nll2

| ity - D@

0

<2 Iyt = Dt + |t e -t ). s

Let us estimate the first term in the right-hand side of (3.82). By the use
of the lipschitz assumption (H1.2) on matrix D, we have

D (07 — Di(@(t)||2 < £3 || — & (¢)]|2 . (3.83)

Moreover, Definition (3.81) for @’ leads to

@ — ()| = (1= 0y = ua(t") + 0(ul, — w(t™)))13.84)
+ <u2h - u2 tn_l))2
< z(\gﬂ s | R O )|2), (3.85)

~

from what we infer that
e — @ @lly <4 (o ls + flae ") = m(e);
+07 ||8iiy |l + 0* [|a(t") — mni(t") o) - (3.86)
Thus from (3.83) and (3.86), and since 0 < 6 < 1 we obtain
D () — Dy (@ (7))
<ach (oo + 02 ozl + [Jae) — meaem) 5
+ () — ma)|; ). (3.87)

Now, we estimate the second term of the right-hand side of (3.82). First

we have
E=A($£:wmww»—&wwmﬁfw-
(3.88)

()

HDij(u_jg(tn)) — Di; ()

By using Cauchy-Schwarz’s inequality and the Lipschitz assumption (H1.2)
on the matrix D, we then get

[psta ) D@ || < 2 )~ il (359)
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Furthermore we have for all ¢ € [t"!,¢"]
@ () - a)]”

= (1= O)us (") + us (1) — ua (1)) + (w2 (") — ua(1))*
Thus, remarking that

(1 — Oy (7Y + Ouy (7)) — uy (t)

tn—l ) $n )
:(1—9)/ %(s)ds—k&/ %(s)ds (3.91)
1 1

(3.90)

and

tn—l
8u;)

uy (") — ug(t) = /t a—t(s)ds, (3.92)

we infer by Cauchy-Schwarz’s inequality that, since 0 < 6 < 1,

|,u—]»6’(tn) _ l_j(t)f < T/ ou

tn—1 a_t
Then from (3.89) and (3.93), we obtain

2

dt, forallte [t"! ¢"]. (3.93)

$n

2

ou

| Pt - D@ || < veh |15

(3.94)

L2(Qn)

- The second right-hand term of (3.79) is estimated as follows. We have

‘ 2
0

l/ D(a(t)) (Vmpa(t") — Vmyi(t)) dt

T n—1

HD(J)anﬁ(t”) D@V

),

By Cauchy-Schwarz’s inequality and the boundedness assumption of D in
(H1.2), we obtain that

2

dz. (3.95)

. ——2 D2
HD(J) Vmid(t") - D@Vt | < 2L | Vrpi(t") — Vanillaq, -
0 T "
(3.96)
. = 5 ¢ (%hﬁ
Since for all ¢ € [t"7!,1"] we have Vm,u(t") — Vmui(t) = / \Y 5 (s)ds,

we infer, using Cauchy-Schwarz’s inequality and estimate (3.96), that

9 2

<7D}y,
0

a’frh‘lj

ot

HD(U)anhﬁ(t”) D@V

v

(3.97)
L?(Qn)
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- Grouping steps (3.79)-(3.97), we find that

2

Hp(wzn)whﬁ(tn) D@V
0

< 128L} |Vl o Ja(e"=t) = mua(t)|;

0.t 5310 (2,M5) ) (
—ian —ian —n— 2 —n
+ @) = mad(e) [+ [|57 |y + 62 1911

2

ol
+327 L |Vl oo (011100 (2 H_
2( k@) o L2(Qn)
81 i
+2rD?, ‘v e .
ot 12(Qn)
(3.98)
Thanks to theorem 3.3 we know that HV’/THJH%OO 0. 5L (M) is bounded

independently of A. We then get the result of the lemma by defining
Cay = 128L% sup,, HVﬁhﬁHim( and Cy3 = max (Cy/4,2D3,).
[

Proof of Theorem 3.4

0.t 5310 (2,M5) )

N

From the numerical scheme (3.3a), for all @, € V> and forn = 1
we have:

ge ey 5

/ (6ay —oup™") - On+ 7 / D@ )V §ay : Vi,
Q Q

= / <ﬂ'h‘lj(tn) — Wh’lj(tn_l)) . ’l7h + 7'/ D(LD'Z”)VﬂhJ(t”) : Vl?h
Q Q
_ T/ F) -6 (3.99)
Q

Furthermore, since both @ and 7,4 are in H'(0,;; L*(Q, IR?)), we have

/ (’,’Th‘lj(tn) - ﬂh‘lj(tn_l)) . ’17}1

Q

= / (mru(t") —u(t")) - vp — / (mna(t"™") —a(t"™")) -

Q Q

+ [ (@) - ae) o,

(3.100)
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Now, using equation (1.64a) of the exact problem, we infer that

i = .,
/a—“ Ty = / F(i0) .ﬁh—/D(ﬁ)Vﬁ LV H, . (3.101)
Q 1 Q Q

Then from equations (3.100) and (3.101) together with equation (3.99), we
obtain

/(5' —ouy _1) ffh—l—r/D( _’en)V(Suh Vo,
Q

+T/D(w,€“)whﬁ(t“) Vi, . (3.102)
Q

Moreover, by the definition (3.8) of the GVP, we get for all o), € V%

/ D@)Vi :V5, = / D(@)Vmyd Vi, + / (mpti(t) — (1)) .5 -
Q Q Q
(3.103)

Then using (3.103) in equation (3.102), we obtain that:
/ (S —Sup™") - On+ 7 / D(@")Véay : Vi,
Q Q

= T/ g(ﬂ'h’lj - 17) -'ﬁh + T/ (L_L) - ﬂh’lj) .‘l?h
o Ot Q
+r / (D(wzn)whﬁ(tn) - D(ﬁ)whﬁ”) . V3,
Q

47 / (ﬁ(ﬁ) - ﬁ(ﬁz—l)) T, forall & € V2. (3.104)
Q

We may now choose v}, = du} in equation (3.104). Using assumption
(H1.3) and applying Cauchy-Schwarz and Young’s inequalities five times to
equation (3.104), we get the following inequality, valid for all eq,... ,e4 > 0
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and forn=1,... ,N:

— 1 —n— = n
(1 = (co+e1+e2+¢e3)) H(SUZH?) " e H5uh 1”3 + 7(Dpy — €4) HV(S‘%H;

2 || 0 T2 |2
< To a—t(ﬂhﬁ i) ||+ 1 U — mhu ,
=S 2 o]
t F(a) —Fa)|
+4%4 D(@\Vmyii(t") — D(@)Vmpii z (3.105)

The four terms of the right-hand side of inequality (3.105) are estimated
using Lemmata 3.2-3.5. We choose

1
Eg = 5, E1 = &9 = &3 = and Eq = Dm (3106)

-
3
Then from estimates (3.70), (3.72), (3.73) and (3.78), together with in-
equality (3.105), we get for n =1,..., N,

1 . 1 1112
(5 = Cur) 1832711 — (5 + Cas7) 6@,

3 = =112 2 817
< Z Hu - Trh‘uHHl(tn—17tn;L2(Q7]RQ)) —I_ 0267— (Ha_t

ot

2 H a’frh‘lj
)

2 )
L2(Qn)

+ Cos7 || — Wh'ljl‘ioo(ojf;LQ(Q’]RQ)) . (3.107)

Where 024 = 1—|—92022/(4Dm), 025 = 3021/4+022/(4Dm) and 026 = 3021/4+
Ca3/(4D,,). Now, let us define

— oy (3.108)
T = . .
4C54

In that way, for all 0 < 7 < 7%, we have

1 1
- — > —. 3.1
5 0247' 4 (3 09)

In addition, it is straightforward to prove that for all 0 < 7 < 7, we have

1 1
(5 + 0257') < (5 - 0247')(1 + CUT) (3110)
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where
w :4(CQ4+CQ5). (3111)
Remark also that w depends neither on A nor on 7.

Then using (3.109) and (3.110), we infer from (3.107) that for all n =
I,....Nand 0 < 7 < 7%,

16a7]|2 — (1 4 wr) Héﬁ}j‘lﬂi <A, (3.112)
=112 (Q,1R?) )

a’—) 2 al ‘—) 2
vaowrt (|5 <ol )
tllzz (g 12(Qn)

ot
+ 4Cys7 ||i — mﬁuim(wﬁﬂmm). (3.113)

where

)\n =3 HJ — ﬂ'h‘leip(

Now, we sum inequality (3.112) over n, in order to get
loaplls < [[sad]ls + 3 A +wr Y [lsa)) (3.114)
k=1 k=1

foralll <n < N and 0 < 7 < 7*. We can then use the discrete Gronwall’s
lemma (see for instance [QV91], §1.4) on inequality (3.114) and find that, for
n=1,... ,N

Y Y

H(Sﬁmg < (H(Sﬁhﬂé + Z )\k) exp(wty). (3.115)

k=1

Furthermore, using the definition (3.113) of Ag, we have that for all
1<n<N

n

P — 112
Z )\k < 3 Hu - ﬂ-huHHl(O,tf;LQ(Q,IRQ))
k=1

ou
2 —_—
+ 4C6T (H "

2 2

du
ot

vy

L2(0,tf;L2(Q,IR2)) L2(0,tf;L2(Q,IR2))

Omyil G
ot _V(?—t

v v

2
L2 (o,tf;L2(Q,]R2))>

— -2 ¢
—|— 4025tf Hu - 7Th‘uHL00(07tf;L2(Q7]R,2)) . (3116)
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Then it is plain, using theorems 3.1 and 3.2 for the properties of the time
dependent GVP, that there exists a positive constant Cy; independent of A
and 7, such that forall 1 <n < N

D Ak < Cor(h* 4 7%). (3.117)
k=1
Finally, using (3.3b), (3.9) and (3.26), we find that there exists a constant

(55 independent of A and 7 such that

65|, < Cash®. (3.118)

Therefore, using inequalities (3.117) and (3.118) together in inequality
(3.115), we find that there exists a constant Cyg independent of A and 7 such
that, for any 0 < 7 < 7%,

|67, < Cao(R* +7), forn=1,... N. (3.119)

We complete the proof of convergence result by writing
[a(t") = wille < Na(t™) — maa(t®)]lo + 10k 1o (3.120)

forall 1 < n < N. Then we use theorem 3.1 and estimate (3.119) to conclude
that there exists a constant C' independent of & and 7 such that

(™) — @illy < C(h* + 1), (3.121)

forall0 <7 <7 and n =1,... ,N. The theorem is thus proved. [ |



Chapter 4

Numerical simulations

4.1 Implementation

To enable numerical simulations of problem (1.47), a program has been writ-
ten in the C++ computer language, based on the finite element library FELIB!.
The program has been called cdp (from the french “champ de phase”) and
has been compiled and run on a Silicon Graphics server with a 250 MHZ
IP27 Processor in a MIPS R10000 Processor Chip, and 2048 Mbytes main

memory, running the SGI IRIX64 6.5 Unix-family operating system.

The program cdp implements numerical scheme (3.3) with § = 1, using
mass lumping for the mass matrix and trapeze quadrature formulae for the
source term in the phase-field equation, as well as for the coupling term in
the concentration equation. The non-linear functions depending on ¢ have
been implemented in their truncated versions, as explained in section 1.3.

For model parameter values, we have used physical values for the Ni-Cu
alloy, adimensionalized as explained in section 1.2. We assume temperature
T to be the mean value of nickel’s and copper’s melting temperatures, and
the adimensional space unit to correspond to [ = 2 x 107%m. We recall that
the adimensional time unit is chosen such that adimensional concentration
diffusivity is equal to D; = 1. These choices result in the following numerical

IThe code library FELIB has been created by Marco Picasso, from the Department of
Mathematics, EPFL. It uses the implementation of the algorithm GMRES from the library
IML++, of the american National Institute of Standards and Technology (NIST), to solve
linear systems.
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values for the model parameters:

ot =0.508, o =0.489, (4.1a)
pA =258, [P =—-241, (4.1b)
v =562 x 1074 (4.1c)
Dy =107", (4.1d)

We recall that adimensional phase-field diffusivity M might determine
kinetic effects in the corresponding sharp-interface limit (see chapter 2). Al-
though Warren and Boettinger [WB95] quote Coriell and Turnbull’s model
for kinetic effects, which would yield an adimensional M = 63.5, there is no
generally accepted value for this parameter, so we have simply fixed it to

M=1. (4.2)

Finally, except in section 4.2, the adimensional interface thickness param-
eter has been arbitrarily fixed to

§=10". (4.3)

This corresponds to an interface thickness of the order of 107®m. Smaller val-
ues would yield very stiff terms in the equations (for instance the source term
of the phase-field equation is of order 1/6%), making computations virtually
impossible without mesh adaption techniques.

4.2 Numerical convergence tests

The first series of tests that were performed on the program cdp were quan-
tifiable numerical convergence tests on the isotropic problem, to which arti-
ficial extra source terms were added. These first tests aim to experimentally
quantify the numerical order of convergence, and compare it to the theoret-
ical results of chapter 3.

To remain in the framework of chapter 3, the tests were performed on the
isotropic problem. Computations were performed in the unit square, with a
final adimensional time ¢; = 107° and an interface thickness § = 0.05. Note
that big time steps and low interface thickness can create stability problems
due to the stiffness of the source terms, i.e. the high values of their Lipschitz
constants. Thus, for these tests we chose a small final time, so that even for
a low number of time steps, results may already be relevant, and that all
required computations can be done using a reasonably small cpu time. We
added right hand sides to both evolution equations in problem (1.47), so that
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j h]‘ ehj Sj
115.000 —2 | 3.700E — 1
212500 —2 | 9.332F — 2 | 1.988
3| 1.667E —2 | 4.158F — 2 | 1.994
411250 —2 | 2.343FE — 2 | 1.994
51 1.000E —2 | 1.500F — 2 | 1.996
6 | 8.333FL —3 | 1.043F — 2 | 1.997
7| 7.143E —3 | 7.662E — 3 | 1.998
816.250FL —3 | 5.868F — 3 | 1.998
9 15.556F —3 | 4.637E —3 | 1.998
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Table 4.1: Errors and convergence order for very regular test functions

given functions ¢.(z,y,t) and c.(x,y,t) (defined for (z,y) in [0, 1] x [0, 1] and
t € [0,ty]) are solutions of the resulting modified problem.
For a first test we chose the infinitely differentiable functions

| 1 e Y ./ ¢
qbe(x,y,t):ce(zr,y,t):§ 1 +sin | 27 JJ—I—E sin | 27 y—l—g

(4.4)

We chose to relate the time step 7 to the mesh size h of a regular mesh
by the relationship 7 = 40h?. The meshes used in these tests are based on
a regular grid of squares, each square being randomly cut through either of

its diagonals. Let us denote by e, = max ||u(t™) — 'ITZHLQ(Q R2) the error
1<n ’

NI

between the exact solution @ = (¢, ¢.) and the computed solution .
We are interested in the local slope of the error with respect to A in
logarithmic scale, which we define by

o ln(eh]) — ln(ehj_l)
" In(hy) —In(hjoy)

(4.5)

where hj_; and h; are choices of mesh sizes for two consecutive calculations,
and e, and ep,,_, the corresponding computed errors.

The results of these tests are given in table 4.1. Note that the slopes s;
take values very close to 2. This simple test therefore confirms our theoretical
result of convergence order h? + 7, with a very regular test function.

Nevertheless, on physical simulations, the solutions are not as regular as
the product of two sines, and their main feature is that their values change
very fast on regions of length scale § (adimensional interface thickness). For
this reason, we now present a second numerical test, with test functions
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reproducing the features of the physical solutions, yet regular enough to be
in the scope of our convergence theorem.

2
We define p(t) = 0.15 + O.St— and we choose
f

0 if r(z) < p(1),
de(z,t) = ¢ 0.5 (1 — cos (%W)) if p(t) <r(z) < p(t) + 24,
1 if p(t) 4+ 20 < r(x),
(4.6)
and
ce(x,t) =
0.3 if r(z) < p(t),

(z) <
0.3+0.2 (1 - cos (t) < r(z) < p(t) + 6,
0.7—-0.1 (1 — cos MW)) if p(t) + 6 < r(z) < p(t) + 24,
0.5 if p(t) + 26 < r(x),

NN
3
S

(4.7)

where r(z) is the distance between z and the center of Q. The isovalues of
the solution are expanding concentric circles with a boundary layer of width
2.

We follow the same procedure as for the previous tests. The results are
given in table 4.2.

Again, this test confirms the theoretical result of convergence order h%+7.

4.3 Anisotropy tests

In this section, we want to qualitatively study the convergence and stabil-
ity of the numerical scheme (3.3) applied to the anisotropic problem, i.e.
with matrix D redefined as (1.65), for computations corresponding to the
beginning of dendritic growth. In particular, we are looking for differences
in behaviour when inequality (1.66) is fulfilled or not. Calculations are still
perfomed for parameter values corresponding to a Ni-Cu alloy, and therefore
we fix the anisotropy order to & = 4, since 4-fold anisotropy is experimen-
tally observed in Ni-Cu dendrites. For this choice of k, the right-hand side
of (1.66) is equal to 1/15. For the reminder of this section, we will therefore
call low anisotropy values of a below 1/15, and high anisotropy values of a

above 1/15.
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j h]‘ ehj Sj
1|5.000F —2 | 2561K —1
212500 —2 | 5.071F — 2 | 2.337
3| 1.667TE —2 | 2.282F — 2 | 1.969
41 1.250F —2 | 1.295F — 2 | 1.969
51 1.000E —2 | 8.355F — 3 | 1.965
6 | 8.333FK —3 | 5.810F — 3 | 1.992
7| 7.143FE —3 | 4.281FE — 3 | 1.981
816.250F —3 | 3.284F — 3 | 1.987
9 | 5.556F —3 | 2.596F — 3 | 1.995

Table 4.2: Errors and convergence order for test functions similar to physical
solutions

Throughout this section, for the sake of performance, computations are
actually made over one quarter of the square adimensional domain
Q = [<0.6,+0.6] x [<0.6,40.6], i.e. on the domain Q = [0,0.6] x [0,0.6].
For an anisotropy of degree four whose main axis are chosen as coordinate
axis, natural boundary conditions occur on the extra “artificial” boundaries
of the partial domain ). Let us remark that once extrapolated to the whole
domain 2, the solutions we find will be symmetric with respect to both
cartesian coordinate axis. However, there might exist other less symmetric
solutions. Final time is set to ¢y = 0.02.

The initial conditions are defined as follows:

0 if |I| < po,
do(z) =< 0.5 (1 — cos (mfp‘)w)) if po < |z| < po+ 6, (4.8)
1 if po + 6 < |z,
and
Cs0 if |$| < po,
co() = { cig+ (co— )52 if po < |z] < po + 6, (4.9)
Co if po + 26 < |z],

where pg = 0.01 unless stated otherwise. This corresponds to a small disc
of solid in the center of a liquid domain. The initial concentration values
are determined by ¢,o = 0.482, ¢;p = 0.510 and ¢g = 0.497. This last value
corresponds to an undercooling of 20K, i.e. the value that the concentration
at the liquid side of the interface would have if the temperature was 20K
higher, according to the phase diagram represented in figure 2.3.
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4.3.1 Behaviour at low anisotropy

We perform a series of tests for a = 0.05, which is below but close to the
critical value 1/15 = 0.0666.... We want to qualitatively study the space
and time convergence as well as stability with respect to mesh shape and
initial conditions.

We will consider two families of structured meshes in €, consisting of
regular meshes of squares split into triangles either by the descending diag-
onal (see figure 1(a)) or by the ascending diagonal (see figure 1(b)). These
correspond respectively to meshes of type I (see figure 2(a)) and type II (see
figure 2(b)) in .

| |
RNl - 7=
N ‘L7

1
N \

2

i
N s
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(a) Type I mesh (b) Type II mesh

Figure 4.1: Meshes used for computations in domain

| , ZIN N | NNttty
_/ \_ \_\ /_/
- AN _ _
N /
N 7/ 7 N
) A ) . L7 Ny .
(a) Type I mesh (b) Type II mesh

Figure 4.2: Meshes extrapolated to domain €}

Our reference computations are done with 200 x 200 nodes in Q and 1000
time steps with an initial condition of radius p = 0.01. For the remainder of
this section we will show curves of the level set ¢ = 1/2. It will thus be possi-
ble to qualitatively appraise the effect of numerical parameters by comparing
several such curves, which can be superimposed on the same graphic. The
black curves in figures 4.3, 4.4 and 4.5 are actually the same, corresponding
to the reference coputations, whereas the other curves in each of these figures
is obtained by varying numerical parameters one at a time.
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Effect of initial condition

We first test stability with respect to initial conditions. For this we fix all
physical and numerical parameters, and vary only the initial condition radius
po in (4.9) and (4.8). Results are represented in figure 4.3, where it can be
clearly seen that the solution for low anisotropy is stable with respect to
initial condition. ? In this figure, level sets ¢ = 1/2 have been represented
both at initial and final times of the computations. Notice that the behaviour
is the same for both mesh types.

Y \
V4 AN
/ A
e N
i A A
x\\ //
N
(a) Type I mesh (b) Type II mesh
Radius pg of initial condition: 0.1 0.2 0.3

Figure 4.3: Different initial conditions in 200 x 200 meshes, 1000 time steps

Effect of mesh size

Now we fix the initial condition and the time step, and vary the mesh size.
We qualitatively observe convergence in mesh, as seen in figure 4.4. Again,
results are essentially independent of mesh type when the mesh is fine.

Effect of time step

Finally, we fix the initial condition and the mesh size, and vary the time
step. We qualitatively observe convergence in time step, as seen in figure
4.5. Results are still essentially independent of the mesh type.

2We have also noticed that different shapes (circle, square, ... ) of initial conditions
yield the same type of solutions after an evolution time of ¢;.
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(a) Type I mesh (b) Type II mesh

Meshes: w50 x 50 100 X 100 150 X 150 s 200 < 200

Figure 4.4: Convergence in mesh, fixed 1000 time steps

(a) Type I mesh (b) Type II mesh

Time steps: mmm 250 500 750 1000

Figure 4.5: Convergence in time steps, fixed 200 x 200 meshes
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Interpretation

We have shown that computations at low anisotropy are stable with respect
to initial conditions, mesh size and time step. Moreover, the orientation
of mesh elements has little effect on the results when the mesh is fine and
the time step small, and the scheme seems to converge to solutions regular
in space (the observed curves are smooth). We are therefore inclined to
believe that the results of regularity and unicity (see [RS00]) and numerical
convergence (see chapter 3) for the isotropic problem might remain valid at
low anisotropy. This is just a conjecture, and we must not forget that we
have been working on one fourth of the total domain, thus imposing certain
symmetries to the solutions. Corresponding theoretical results are being
investigated.

4.3.2 Behaviour at high anisotropy

Exactly the same computations as in subsection 4.3.1 are done for a high
anisotropy, chosen as @ = 0.15. Results are shown in figures 4.6, 4.7 and 4.8.

(a) Type I mesh (b) Type II mesh

Radius pg of initial condition: 0.1 0.2 0.3

Figure 4.6: Different initial conditions in 200 x 200 meshes, 1000 time steps

We observe that two separate families of solutions to the discrete problem
appear for the same physical parameters, depending on the type and precision
of the mesh. Also, both families of solutions seem to converge to functions less
regular than the corresponding ones at low anisotropy (apparition of sharp
tips in the graphs of the level sets). Nevertheless, both types of solutions seem
to be stable with respect to initial conditions and time steps. Therefore, we
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(a) Type I mesh (b) Type II mesh

Meshes: w50 x 50 100 X 100 150 X 150 s 200 < 200

Figure 4.7: Convergence in mesh, fixed 1000 time steps

(a) Type I mesh (b) Type II mesh

Time steps: mmm 250 500 750 1000

Figure 4.8: Convergence in time steps, fixed 200 x 200 meshes
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are inclined to believe that at high anisotropy, the continuous problem has
multiple solutions (at least two), which are less regular than those of the low
anisotropy and isotropic problems. The physical relevance of either of these
solutions at high anisotropy is not straightforward.

4.4 Physical simulations

We present a physical simulation of the solidification of a Ni-Cu alloy. This is
done using the numerical scheme (3.3), the initial conditions (4.8) and (4.9)
with radius pg = 0.1, and model parameters values (4.1),(4.2) and (4.3). The
domain is chosen as Q = [—2,42] x [-2, +2].

As in section 4.3, computations are made only on one quarter of the
domain Q = [0,42] x [0,+2]. We use an unstructured mesh, consisting of
roughly 1/2 x 600 x 600 evenly distributed nodes below the straight line
x1 + x3 = 2, and which is much coarser above this line. The computations
are made in 5000 time steps for a time of ¢; = 0.01. The choices of anisotropy
coefficient, mesh size in the relevant region and time step size ensure that
the computation will be performed in the range of numerical parameters
validated by section 4.3.

In section 4.3, we used an anisotropy of @ = 0.05 for our tests because
it is near the critical anisotropy a. = 1/15. However, we now fix a = 0.02,
which is an approximation of the physical value for the Ni-Cu alloy. Resulting
graphs of functions ¢ and c¢ at final time are presented in figures 4.9 and 4.10,
and the evolution of the level set ¢ = 1/2 is presented in figure 4.11. The
computation is very long, taking 5 CPU days to complete with the hardware
mentioned in section 4.1. Performance could be drastically increased using
adaptive meshing, which is out of the scope of this work (this is the subject
of [KPS]).

It is noticeable in figure 4.11 that the tips of the dendrite advance at a
constant velocity (after a transient regime near the initial condition). This
is a good indication of qualitative agreement with physics. Quantitatively,
far from the initial condition we have measured a tip velocity (after re-
dimensionalization) of 0.73 cm s™!, which is of the expected order of mag-
nitude. Indeed, a computation using Ivantsov’s model and marginal stability
analysis (see [KF98, ch. 4]) yields a dendrite tip velocity of 0.35 cm s~ with
our physical parameters ®, without accounting for anisotropy undercooling,
which should accelerate the dendritic growth.

3This value has been kindly computed by Alain Jacot from the Materials Science De-
partment, EPFL.
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Figure 4.9: Phase-Field ¢, a = 0.02, t = 0.1
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Figure 4.10: Concentration ¢, a = 0.02, t = 0.1
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7

Figure 4.11: Evolution of level set ¢ = 1/2,
1072,107%,1.5 x 1072,...,10 x 1072,
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To illustrate the physical behaviour at longer times and the apparition of
secondary branches of the dendrite, we performed a similar computation with
a final time ¢; = 0.3. However, due to technical limitations, we kept a mesh
of approximately 1/2 x 600 x 600 nodes for a domain two times larger ) =
[—4,4+4] x [-4,44], and computed the solution using 7500 time steps. The
resulting graphs of functions ¢ are ¢ were presented in the Introduction. The
mesh size and time step are coarser than the values validated in section 4.3,
but the observed growth corresponds nevertheless to the expected physical
behaviour. Quantitatively, the tip velocity remains constant, as can be seen
in figure 4.12. Dendrite tip velocity is a functional of the solution which
seems to be very stable with respect to numerical parameters.

Figure 4.12: Evolution of level set ¢ = 1/2, a = 0.02, t = 0,1072,2 x
1072,...,30 x 1072. The red level is at time t = 107!, and corresponds to
the last level set in figure 4.11.

Finally, we want to verify that the physical simulations are stable with
respect to small changes in the interface thickness. For this purpose, com-
putations at anisotropy a = 0.05 (i.e. near the critical anisotropy limit)
are done for three different values of 4, under the same conditions as be-
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fore. Resulting graphs of level sets ¢ = 0.5 have been superimposed in figure
4.13. From this figure one may conclude that small perturbations of § do not
excessively influence the computations. However, it is clear that the sharp
interface asymptotic limit has not yet been reached for the chosen range of
values for 4. Nevertheless, smaller values of the interface thickness would
induce much stiffer problems (some terms in the evolution equations are of
order 1/4?), and therefore much longer computations. They would certainly
require adaptive mesh and a faster computer.

— (S - 08 10_2 — (S - 10 10_2 — (S - 12 10_2

Figure 4.13: Influence of interface thickness ¢ on a physical computation at
near critical anisotropy a = 0.05.
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Conclusion

We have introduced a thermodynamically consistent solutal phase-field model
in two variants: isotropic and anisotropic. The simpler isotropic model has
been the object of theoretical investigations. On the one hand, we derived
Stefan-like limit models, with a formal asymptotic analysis. On the other
hand, we investigated the convergence of a finite element in space, semi-
implicit Euler in time numerical scheme.

For numerical simulations, we worked with the anisotropic problem, choos-
ing model parameters in order to fit a realistic physical alloy. We have mainly
studied the phase-field function. We investigated the stability of its level set
¢ = 1/2 — which corresponds roughly to the solid-liquid interface — with
respect to numerical parameters and to the model interface thickness. The
interface is stable at low anisotropy, while at high anisotropy we observe at
least two different families of discrete solutions, depending on symmetries of
the mesh used in the computations. At low anisotropy, we also observe that
the dendrite tips grow at a constant velocity, as is expected from physics, and
the velocity observed in the simulations has the expected order of magnitude.

Several questions remain open for future investigation. One could try to
extend the different theoretical results to the anisotropic problem with low
anisotropy. It would also be useful to derive a posteriori error estimates for
the numerical scheme, in order to justify and implement efficient algorithms
for adaptive mesh refinement. Finally, many issues could be investigated
about the behaviour of the concentration in numerical simulations. We have
observed some instabilities which seem to result from the initial condition
for ¢. It may be possible to correct this problem by choosing smoother
initial conditions (i.e. veryfying the convergence theorem’s assumptions)
which should nevertheless somehow fit the physics. Also, a complete study
of the behaviour of concentration profiles around the solid-liquid interface
could help to validate the numerical simulations by comparison with the
limit models derived.
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Appendix A

Construction of the pure
element free energy density

In this appendix, we want to build a thermodynamically consistent free en-
ergy density f¢(T, ¢) for the pure elements ¢ = A ans £ = B. This appendix
is based on material originally presented in [KKS98], and is a justification
for the choice of a model close to that of Warren and Boettinger [WB95]. It
is in this part of the modelling that one may really get a grasp of the passage
from a classical approach to a phase-field approach for phase transitions.

A.1 Internal energy density

We start by thinking in terms of internal energy. From the classical theory of
phase transitions, we know that the classical internal energy density eﬁl(T)
is discontinuous at the melting temperature T, where its value is increased
by the latent heat L¢. Near the melting temperature, it is almost affine, the
slopes of its graph at either side of the gap being equal to the specific heat
C¢. Both the latent heat and the heat capacity are experimentally known
quantities for most metals. A typical graph of the classical internal energy
is given in figure A.1.

With the introduction of the phase-field ¢ as a new thermodynamic vari-
able, the temperature T' should no longer give any information about the
phase state of the physical system. Therefore, both liquid ans solid states
should be possible for all temperatures, and consequently two branches of
internal energies - solid state and liquid state energies - should exist, defined

by:
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3
€.l

e§(T) = & (TE) + CHT = T¢), (A.la)
eS(T) = S (TEH) + CHT - T%), (A.1b)

as shown in in figure A.2.

Now the phase-field ¢ is introduced to describe a smooth transition be-
tween the solid and liquid internal energies. Thus we define an internal energy
depending (monotonously) on the phase-field as

(T, 0) = () + p(0) (f(T) = (1)) = e£(T) + Lip(9),  (A2)
where p is a C! function such that
p(0) =0, (A.3a)

p(l) =1, (A.3Db)
p'(¢) >0, Voe(0,1). (A.3c)
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e

Figure A.2: Solid and liquid internal energies

A.2 From internal to free energy

In order to link the free energy density f¢(7', ¢) to the internal energy density
e*(T, ¢), we use the following thermodynamic rules:

FHT, ¢) = €8(T,¢) — T's* (6%, ¢) (A.4a)
D¢ (e8T9) ¢ 1
( = ¢ _ 5 (A.4b)

where s¢ is the entropy density for pure element .
Differentiating (A.4a) with respect to 7' and then combining it with
(A.4b) we obtain that

Af(T
fg(Tv QD) = €£(T7 ¢) + T%? (A5)
which can also be written as
g I
(1, 0y + 122 (A.6)
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By integrating this last equation from an arbitrary 7' to the melting
temperature 7, we get

F(T.6) =T ( [ T%fﬁ(Tm) S

T T m

We already derived an expression for the internal energy density ¢*(T', ¢)
in section A.1. However, we also need to describe the free energy at melting
temperature f¢(T%, ) before we can get an explicit expression for the free
energy density at all temperatures.

A.3 Free energy density at melting tempera-
ture

(TR, )

Figure A.3: Pure element free energy density at melting temperature

At melting temperature, both solid (¢ = 0) and liquid (¢ = 1) states
should be equally stable, and they should be the only stable states. We
decide to describe this situation by a double-well potential

fg(Tsw 99) = WEQDQ(l - ¢)27 (AS)
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where the positive number W¢/16 is the height of the potential barrier’s
maximum value at ¢ = 1/2. Note that this model parameter is linked to
physical parameters in subsection 1.1.3. The resulting free energy at melting
temperature is represented in figure A.3.

A.4 Free energy density

Combining (A.2), (A.7) and (A.8) we derive the following expression for the
pure element free energy density:

& _
() + Wene (1 — )

3 3
TTg d e (TE7) + C° (Tlnj;—m—T§+T). (A.9)

We still need to specify one important constraint on the final form of
JE(T, ¢), which will affect the definition of p(¢), our only remaining degree
of freedom. Indeed, for all positive values of T, and not only 7' = T%, the
only stable states of the pure element should be solid (¢ = 0) and liquid
(¢ = 1). In other words, we make the following assumption on f¢(T', ¢):

(HA.1) ¢ = 0 and ¢ = 1 should be the two and only local minima of f¢(7', ¢)
in the range ¢ € [0, 1], for any fixed value of 7" > 0.

FA(T, ) =

m

Notice that

afe . TE-T ., (T

%(T, ¢) = ~rL P(9) +2W T — (1 — ¢)(1 — 29) (A.10)
and

&fﬁ — Tg T E 13 T B _

PYe (T,9) = e Lp (¢) + W 7€ —(2 - 12(¢" - ¢)). (A.11)

Therefore, if we consider f¢ as being still defined outside the physical
interval ¢ = [0, 1] by the same expression (A.9) and that p is a C'* function
fulfilling constraints (A.3), assumption (HA.1) implies that

p'(0) =p'(1) =0, (A.12a)
T¢ —T T
””Ti&Lf p"(0) + 2W’5T >0, VT >0, (A.12b)
T —T T

TE LEp" (1) + zwﬁT—)5 >0, VT >0. (A.12¢)
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These constraints are necessary for a non-truncated model to be thermody-
namically consistent.

To be certain that these last conditions are always fulfilled by the model,
independently of the specific values of materials parameters W¢ > 0 and
L* > 0, we need to impose the following extra constraints on function p(¢):

p'(0) = p'(1) =0, (A.13a)
p"(0) =p"(1) = 0. (A.13h)

Notice that the polynomial of lowest degree verifying constraints (A.3)
and (A.13) is precisely the one chosen by Warren and Boettinger [WB95]:

p(¢) = 66° — 158" + 104°. (A.14)

This choice also ensures that there are no other minima of f¢ in [0, 1], which
was also required by (HA.1).

We also remark that in the truncated model introduced in section 1.3,
constraints (A.13) are no longer necessary for ¢ = 0 and ¢ = 1 to be local
minima of f¢. However, it is still useful to keep (A.13a), as it ensures that
all non-linearities in ¢ of the problem are still of class C! after truncation.

Finally, we represent the resulting pure element free energy densities with
Warren and Boettinger’s choice of p(¢) for temperatures above and below the
melting temperature 7¢ in figure A.4. One can clearly see that, as expected,
the solid state (¢ = 0) is prefered (it has a lower free energy) below the
melting temperature, and the liquid state (¢ = 1) above.
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A &

-04-02 0 020406 08 1 1.2 14 -04-02 0 020406 08 1 12 14

Figure A.4: Pure element free energy densities below and above melting
temperature
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Appendix B

List of symbols

a(?)

a
a:(u, V)
b
c(x,t)

Cl(sv t)a CS(S7 t)
(T, c,9), flc, )
ff(Tv Qb)

fHe), 15 (e)
9(¢)

h

0,J

anisotropy factor

anisotropy amplitude

bilinear form defining 7,

generic vector

concentration variable

liquid and solid concentrations

exp(l), internal energies in appendix A
truncation error

alloy free energy density (7" is often omitted)
pure element free energy density

free energy densities at ¢ =0 and ¢ =1
double-well potential

mesh size

generic indices

degree of anisotropy / generic index
characteristic domain length

normal direction (— 9/0dn)

auxiliary function in f(7T', ¢)

auxiliary function in D;(¢)

local curvilinear coordinate system
time coordinate

final time

vectorial variable

generic vectors

local interface normal velocity

molar volume

space coordinate

Table B.1: Lower-case latin
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Sy

o,
NN

SN
=

~—
-
[\~]
—~
o
~—

e
S

ﬁlg@@@bb@@bb

TNy
RS
=%

K1
~—

W5 (X,Y)
X,Y

pure elements
generic matrix

generic constant

Appendix B. List of symbols

set of continuously j-differentiable functions

non-linear factors in the evolution equation for ¢

diffusivity matrix in the vectorial formulation
solid and liquid diffusivity coefficients
uniform coercivity constant for D(u)
maximum bound for elements of D(u)

source term in the evolution equation for ¢

total free energy
Sobolev spaces (= WZF?)

rotation matrix

concentration flux

mesh triangle

Lipschitz constants for D and F

latent heats (L = A, B)
Sobolev spaces (= W%7)
phase-field diffusivity

set of 2 x 2 real matrices
Boltzmann constant

temperature

melting temperatures
mesh triangulation
Sobolev space H'(Q)
finite elements space
double-well barrier heights

Sobolev spaces

generic Banach spaces

Table B.2: Upper-case latin
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auxiliary functions in f(c, ¢)

Q@ continuity constant of a,
ag, Be adimensional constants in a(c), 3(c)
I} coercivity constant of ay
v adimensional constant in f(c, @)
) interface width
€ Ginzburg-Landau coefficient
¢ weight for ¢ equation in vectorial formulation
n(e, @) coefficient of §F/d¢
0 parameter of numerical scheme
K local interface curvature
A generic auxiliary function or constant
i coefficient of §F/dc
£ pure element (§ = A or £ = B)
E generic vector
T generalized vectorial elliptic projector
p re-scaled local coordinate r
ot surface tensions
T time step
o(x,t) phase-field
Gm () stationary phase-field at melting temperature
X “Gibbs-Thomson” coefficient in sharp-interface limits
(Vo) anisotropy angle
w Gronwall’s lemma main constant
Table B.3: Lower-case greek
r liquid-solid interface
A laplacian
O(V¢) anisotropy matrix
A auxiliary linear operator during formal asymptotics
II product
b sum
Q space domain
0,0, solid and liquid subdomains
o0 space domain boundary

Table B.4: Upper-case greek
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Appendix B. List of symbols

explicitly adimensional quantity

vector with respect to (c, )T

euclidian norm

norm in space X

seminorm in space X

norm in L*(Q2)

jump of quantity across solid-liquid interface
d-independent quantities in limits 1,2 / 3.4.
average of an integrable function on [t"71,¢"]

Table B.5: Others
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Index

anisotropy, 14, 21 interface, 25
amplitude, 15 thickness, 12
high, low, 66
order. 15 latent heat, 81

concentration, 7 mesh, 73

conservation of matter, 8, 30 structured, 68

convergence, H2 model parameters, 63
tests, 64

normal distance, 25

curvature, 25 .
: _ normal velocity, 25
moving by mean, 36

curvilinear coordinates, 25 operator
self-adjoint, 35

definite positiveness
order parameter, 7

uniform, 19

diffusion coefficient orthogonality condition, 35

concentration, 13 phase field, 7

phase-field, 14 potential barrier height, 33
elliptic projector program, 63

Vectoria‘l, 41 region
energy density liquid,solid, 25

free, 8 rescaling, 26
internal, 81
Stefan problem, 30

finite el t i
nite elemen alternative, 36

spaces, 39
flux, 8
free energy
density, 8, 24

functional, 8 tangent construction

generalized, 37
modified, 32, 35

surface tension, 12

common, 28

parallel, 32, 35
temperature, 7
initial conditions, 67 thermodynamics

Ginzburg-Landau, 8

Gronwall’s lemma, 61
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consistent free energy, 10
second principle, 8

time step, 40

triangulation, 39

truncation, 18
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